python实验四:聚类模型KMeans算法及其评价

本文通过Python实现KMeans聚类算法,使用seeds数据集进行实验,详细介绍了数据预处理、模型训练过程,并对不同类别数的聚类效果进行FMI指数评价,探讨最佳聚类数目。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、题目描述

二、实验代码

数据集:下载积分已改为0,请下载

一、题目描述

seeds数据集存放了不同品种小麦的区域、周长、压实度、籽粒长度、籽粒宽度、不对称系数、籽粒腹沟长度以及类别数据。该数据集共210条记录,7个特征,1个标签,标签分3类

任务要求:

2.1.读取该数据集seeds_dataset.txt,以\t为分隔符

2.2.将数据的前7列作为待分析数据data,第7列target

2.3.对data进行标准差标准化

2.4.利用Kmeans对数据进行聚类分析,要求聚为3类。

2.5.对K-Means聚类模型进

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值