Hive学习 day01

今天,我开始了Hive的学习。学习了基本概念、安装地址说明、安装部署、基本Shell操作、Hive初次启动ERROR解决、将本地文件导入Hive案例、多客户端异常分析、centos7安装mysql5.7.21、Hive元数据配置到Mysql里面、常用的交互命令、其它命令操作、常见属性配置、数据类型、DDL、创建内部表、外部表+内部表、删除数据库-补录、分区表、修改表。
总结一下:
1.Hive基本概念
什么是Hive:
Hive:由Facebook开源用于解决海量结构化日志的数据统计。
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。
本质是:将HQL转化成MapReduce程序
1)Hive处理的数据存储在HDFS
2)Hive分析数据底层的实现是MapReduce
3)执行程序运行在YARN上
2.为什么使用Hive
1)直接使用hadoop所面临的问题
(1)人员学习成本太高
(2)项目周期要求太短
(3)MapReduce实现复杂查询逻辑开发难度太大
2)Hive的好处
(1)操作接口采用类SQL语法,提供快速开发的能力。
(2)避免了去写MapReduce,减少开发人员的学习成本。
(3)扩展功能很方便。
3.Hive的特点
1)操作接口采用类SQL语法,提供快速开发的能力(简单、容易上手)。
2)避免了去写MapReduce,减少开发人员的学习成本。
3)Hive的执行延迟比较高,因此hive常用于数据分析,对实时性要求不高的场合;
4)Hive优势在于处理大数据,对于处理小数据没有优势,因为Hive的执行延迟比较高。5)Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。
4.Hive和数据库比较
由于Hive采用了类似SQL的查询语言HQL(hive query language),因此很容易将Hive理解为数据库。其实从结构上来看,Hive和数据库除了拥有类似的查询语言,再无类似之处。本文将从多个方面来阐述Hive和数据库的差异。数据库可以用在Online的应用中,但是Hive是为数据仓库而设计的,清楚这一点,有助于从应用角度理解Hive的特性。
1)查询语言
由于SQL被广泛的应用在数据仓库中,因此,专门针对Hive的特性设计了类SQL的查询语言HQL。熟悉SQL开发的开发者可以很方便的使用Hive进行开发。
2)数据存储位置Hive是建立在Hadoop之上的,所有Hive的数据都是存储在HDFS中的。而数据库则可以将数据保存在块设备或者本地文件系统中。
3)数据更新
由于Hive是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。因此,Hive中不支持对数据的改写和添加,所有的数据都是在加载的时候中确定好的。而数据库中的数据通常是需要经常进行修改的,因此可以使用INSERT INTO … VALUES添加数据,使用UPDATE … SET修改数据。
4)索引
Hive在加载数据的过程中不会对数据进行任何处理,甚至不会对数据进行扫描,因此也没有对数据中的某些Key建立索引。Hive要访问数据中满足条件的特定值时,需要暴力扫描整个数据,因此访问延迟较高。由于MapReduce的引入,Hive可以并行访问数据,因此即使没有索引,对于大数据量的访问,Hive仍然可以体现出优势。数据库中,通常会针对一个或者几个列建立索引,因此对于少量的特定条件的数据的访问,数据库可以有很高的效率,较低的延迟。由于数据的访问延迟较高,决定了Hive不适合在线数据查询。
5)执行
Hive中大多数查询的执行是通过Hadoop提供的MapReduce来实现的。而数据库通常有自己的执行引擎。
6)执行延迟
Hive在查询数据的时候,由于没有索引,需要扫描整个表,因此延迟较高。另外一个导致Hive执行延迟高的因素是MapReduce框架。由于MapReduce本身具有较高的延迟,因此在利用MapReduce执行Hive查询时,也会有较高的延迟。相对的,数据库的执行延迟较低。当然,这个低是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力的时候,Hive的并行计算显然能体现出优势。
7)可扩展性
由于Hive是建立在Hadoop之上的,因此Hive的可扩展性是和Hadoop的可扩展性是一致的(世界上最大的Hadoop集群在Yahoo!,2009年的规模在4000 台节点左右)。而数据库由于ACID语义的严格限制,扩展行非常有限。目前最先进的并行数据库Oracle在理论上的扩展能力也只有100台左右。
8)数据规模
由于Hive建立在集群上并可以利用MapReduce进行并行计算,因此可以支持很大规模的数据;对应的,数据库可以支持的数据规模较小。
5.Hive基本Shell操作
1、启动hive
[victor@node1 hive]$ bin/hive
2、查看数据库
hive>show databases;
3、打开默认数据库
hive>use default;
4、显示default数据库中的表
hive>show tables;
5、创建一张表
hive>create table student(id int, name string) ;
6、显示数据库中有几张表
hive>show tables;
7、查看表的结构
hive>desc student;
8、向表中插入数据
hive>insert into student values(1000,“alex”);
hive>insert into student(id,name) values(1,“xiaoming”);
9、查询表中数据
hive>select * from student;
10、删除表
hive>drop table student;
11、退出hive
hive>quit;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值