机器学习--多分类学习

多分类学习

基本思想

“拆解法”,即:将多分类任务拆分为多个二分类任务。
先对任务进行拆分,然后为拆分出的每个二分类任务训练一个分类器;在测试时,对这些分类器的结果进行集成以获得最终 的多分类结果。

拆分策略
  1. 一对一:将N个类别两两配对,从而产生N(N-1)/2个二分类任务,由此训练得到N(N-1)/2个分类器。测试时,测试数据会被送入所有的分类器中,把预测的最多的类别作为最终的结果;
  2. 一对多:每次将一个类作为正例、其它类的样例作为反例来训练N个分类器;测试时如果只有一个分类器被预测为正例,则对应的类别作为最终的分类结果,如果有多个分类器预测为正例,则要检测分类器的预测值置信度,置信度最大的类别作为分类结果;
  3. 多对多:若干个类作为正例、若干个作为反例进行训练。常用技术是:纠错输出码。
纠错输出码
  1. 编码阶段:对N个类别做M次划分,每次将一部分作为正例、一部分作为反例,从而形成一个二分类训练集,总共形成M个分类器;
  2. 解码阶段:M个分类器分别对测试数据进行预测,这些预测标记组成一个编码。将这个预测编码与每个类别各自的编码进行比较,返回其中距离最小的类别作为最终的预测结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值