多分类学习
基本思想
“拆解法”,即:将多分类任务拆分为多个二分类任务。
先对任务进行拆分,然后为拆分出的每个二分类任务训练一个分类器;在测试时,对这些分类器的结果进行集成以获得最终 的多分类结果。
拆分策略
- 一对一:将N个类别两两配对,从而产生N(N-1)/2个二分类任务,由此训练得到N(N-1)/2个分类器。测试时,测试数据会被送入所有的分类器中,把预测的最多的类别作为最终的结果;
- 一对多:每次将一个类作为正例、其它类的样例作为反例来训练N个分类器;测试时如果只有一个分类器被预测为正例,则对应的类别作为最终的分类结果,如果有多个分类器预测为正例,则要检测分类器的预测值置信度,置信度最大的类别作为分类结果;
- 多对多:若干个类作为正例、若干个作为反例进行训练。常用技术是:纠错输出码。
纠错输出码
- 编码阶段:对N个类别做M次划分,每次将一部分作为正例、一部分作为反例,从而形成一个二分类训练集,总共形成M个分类器;
- 解码阶段:M个分类器分别对测试数据进行预测,这些预测标记组成一个编码。将这个预测编码与每个类别各自的编码进行比较,返回其中距离最小的类别作为最终的预测结果。
2889

被折叠的 条评论
为什么被折叠?



