当GPU资源池化遇到量化

目录

01  量化投资的兴起

02 量化交易与量化分析

03 人工智能赋能量化金融

04 量化交易平台 

05 GPU资源池化赋能AI量化平台 


01  量化投资的兴起

20世纪 60 年代,宽客之父爱德华·索普利创立了“科学股票市场系统”,并合伙成立了第一只量化投资基金,且连续 11 年跑赢标普指数;70 年代,“量化对冲之王”詹姆斯·西蒙斯成立了年化收益高达70% 的文艺复兴基金,量化交易开始兴起;90 年代,彼得·穆勒发明了 alpha 系统策略,量化投资进入繁荣期。21 世纪初,随着互联网泡沫破灭和次贷危机,量化基金受到重创。 

量化投资在中国开始发展要到2010 年,在这之前是非常小众的领域,后来随着沪深300指数期货的出现,量化交易有了合适的对冲工具,各种量化策略才得以执行,无论是中长线CTA策略,还是高频交易策略或股票阿尔法策略,都取得了非常好的业绩。

随后量化交易在国内高速发展,各大机构都创立了金融工程部。金工部是集量化投资策略(包括金融衍生品、股票等金融品种)研究、开发、应用与一体的新型团队。

02 量化交易与量化分析

量化分析和量化交易,听上去差不多一个意思,其实,还是有很大的差异。

量化交易是指通过建模,回测,然后通过程序化自动交易,取代了人工的买卖。需要较高的专业知识和技能。目前国内大部分构建量化策略的投资机构与投资者,基本上利用了电脑程序进行订单执行。下单程序把订单报到券商柜台,柜台系统通过前置机报到交易所的撮合主机,撮合主机通过撮合规则进行交易撮合并返回成交回报。为了能够最早的进行成交,各大交易相关方在交易速度上进行了孜孜不倦的研发升级。极速交易也成了量化交易的代名词。最著名的例子是北美的Spread Networks公司,耗资3亿美元,从芝加哥到新泽西,笔直地建设了一条1331公里的光缆,唯一的目的是将芝加哥交易所到纽交所机房的数据传输时间从17毫秒减少到13毫秒。

时至今日,诸如内存柜台、FPGA硬件解码、原子钟等“黑科技”,已逐渐成为各家机构交易服务提供商的“标配”,软硬件多方面的军备竞赛只是为了让自己客户的订单跑的快一点,再快一点。

量化分析是指数据抓取、数据分析、策略构建、策略回测。在实际应用中,投资者根据以往公司的财务数据和市场以往的表现和数据,进行分析,并建立数学模型,接着利用编程和 AI 等技术进行回测分析,不断优化量化策略,从而来帮助选股、择时、算法交易等目的。该方法能够有效地把握时机和规避风险。

量化分析策略构建图

03 人工智能赋能量化金融

人工智能已经在自然语言处理(语义、语音识别)、图像识别等领域有了成熟的商业应用,也赋能百业,为这些领域带来了技术革新。同样,人工智能也在量化金融领域,利用RNN、LSTM(机器学习)预测股票走势、DL(深度学习)选择买点卖点、RL(强化学习)进行买卖。人工智能改变了传统量化,能发掘出传统量化无法发现的投资机会,投资效率更高。

目前,无论在券商、公募还是私募领域,在人工智能与量化金融领域结合方面,均进行了大量资本与人力的投入。各家机构在量化金融领域的竞争,是数据、算法与算力的竞争。

在数据层面,“数据就是新的石油”。各家机构存储了各种市场历年的行情数据:股票、债券、期货、外汇、黄金,以及公司基本面、行业、研报、宏观经济等丰富的财经数据……无数投资者每天都扎在海量数据里,尝试找到某种规律,打磨自己的投资思路,优化自己的投资策略。

在算法层面,量化金融领域利用开源算法,用于自己的交易研究;另一方面大量头部机构也在高薪吸引顶尖的算法研究人员闭关研究自己的“核心算法”。算法也可以理解为决策、策略。

在算力层面,模型的回测需要算力支持,当因子越来越多,一般的硬件已经难以满足,需要大量的GPU算力资源。雄厚的金融资本在机房搭建、设备采购方面不惜花费重金,用GPU集群、超算机房等高科技装备武装到牙齿。的确,新研发的策略,回测出结果两三天和两个月,差距是巨大的。

04 量化交易平台 

目前国内的量化交易平台主要分为两类,一类是基础量化投资平台,主要使用一些复杂度不高的语言,其框架主要为用户在平台上编译策略,平台提供回测反馈,并用网络连接到股票经纪公司的交易接口,通过普通交易席位进行交易。缺点是功能有限制,交易会有延迟;优点是使用便捷,功能也已满足了绝大多数用户的需求,故普及度较高。

另一类是专业量化交易平台,其采用复杂的语言,并连接至专门的交易通道,对软件、硬件都有极高的要求。追求的是在市场上通过高频交易等极限方式获取套利和对冲风险的机会,这要求行情和交易命令的延迟都达到最低。其使用者大都为专业投资机构,对成本和技术的要求极为苛刻。

目前国内市场上大约有超过 30 个在线量化投资平台,它们大多属于基础量化交易平台,主要有聚宽、Bigquant、果仁网、米筐、MInodGo、掘金量化等。提供面向个人用户在线版本,也提供面向券商、基金、期货等专业客户的企业版。功能覆盖数据、策略研究、因子研究、回测、仿真、实盘等。
目前量化交易平台开始引入人工智能技术,在数据指数级暴发的现今,依靠AI技术,在算力和算法的助力下,快速挖掘有效因子,构建和迭代新的策略,帮助客户实现智能投资

AI量化分析策略构建图

05 GPU资源池化赋能AI量化平台 

OrionX AI量化解决方案

OrionX GPU资源池化技术为量化交易平台提供动态、灵活的算力分配,为平台的策略模型的研究、训练与预测、回测验证等提供稳定、高效的算力资源。赋能AI量化交易平台,实现算力资源按需供给,有效提升平台GPU资源的利用率,加速量化策略的迭代更新,缩短开发周期。

对于AI量化平台的使用者、策略分析师和金工部门的研发工程师们,OrionX GPU资源池化解决方案为他们消除算力资源使用障碍。策略分析师们的日常是挖掘和优化因子、调整量化策略,并根据每日盘后数据进行回测分析、参数优化。他们的日常工作离不开算力的支撑。OrionX为他们提供一个便捷使用算力资源的平台,使他们能够专注于真正重要的业务。

目前已有银行和头部证券公司在量化分析、开发测试、在线推理、离线推理等多个场景采用OrionX vGPU资源,利用GPU池化技术提升AI云管平台的GPU管理能力,实现算力资源的在线分配和回收,GPU总体利用率提升了3~8倍,简化了管理和运维。

对于金融行业的其他应用场景,趋动科技也在持续探索中。

  


参考资料及部分图片来源:

https://emt.18.cn/article/article-info/2

https://zhuanlan.zhihu.com/p/52972659

  • 0
    点赞
  • 0
    评论
  • 1
    收藏
  • 扫一扫,分享海报

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值