拓扑排序

本文详细介绍了拓扑排序的概念,包括其特点和使用场景。拓扑排序可以在有向无环图中找到线性的拓扑序,可用于求解拓扑序、判断环以及结合动态规划解决最短路等问题。文章通过实例解析了如何利用拓扑排序求解具体题目,并提供了相关代码示例。
摘要由CSDN通过智能技术生成

拓扑排序

1. 算法分析

1.1 特点分析

    拓扑排序可以在线性的时间复杂度 O(n + m) 内完成求出拓扑序的操作,对象是有向无环图。
拓扑图的性质如下:

  1. 有向图才有拓扑序
  2. 有向无环图必定存在拓扑序
  3. 存在拓扑序 <=> 无环
  4. 有向无环图至少存在一个入度为0的点
  5. 当前的点只影响后面的状态,所以可以dp处理

1.2 使用场景

    拓扑排序,可以支持以下操作:

  1. 求出拓扑序:
    1.1 求一般拓扑序:如果是一般队列,那么求出的为一般的拓扑序
    1.2 求字典序最大/最小拓扑序:如果是优先队列,那么求出的是字典序最大/最小拓扑序
  2. 拓扑序判断环
    判断图中是否有环:如果原来的点数==最后拓扑序内的点数,那么存在拓扑序,无环;否则,有环
  3. 拓扑序+dp:
    3.1 求最短\长路:如果边权全部大于0,那么可以使用拓扑排序找最短路
    3.2 求每个点的可达性

2. 例题

2.1 求出拓扑序

2.1.1 一般拓扑序
#include <bits/stdc++.h>

using namespace std;

int const N = 1e5 + 10;
int e[N], ne[N], h[N], idx, d[N];
int n, m;
vector<int> ans;

// 建立邻接表
void add(int a, int b) {
   
    e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}

// 拓扑排序
void top_sort() {
   
    queue<int> q;  // 维护一个队列
    for (int i = 1; i <= n; ++i) if (!d[i]) q.push(i);  // 把入度为0的点加入队列
    // 当队列不为空时
    while (q.size()) {
   
        auto t = q.front();  // 取队头
        q.pop();  // 队头出队
        ans.push_back(t);  // 把这个数字放入答案序列
        for (int i = h[t]; i != -1; i = ne[i]) {
     // 枚举所有队头元素相邻的元素
            int j = e[i];
            d[j]--;  // 队头元素出队相当于把与队头元素相连的元素的入度减一
            if (!d[j]) q.push(j);  // 把入度为0的元素放入队列
        }
    }
    if (ans.size() == n) {
     // 输出答案序列
        for (auto a: ans) printf("%d ", a);
    }
    else cout << "-1";
}

int main()
{
   
    cin >> n >> m;  // 输入点数和边数
    memset(h, -1, sizeof h);  // 初始化h
    for (int i = 0; i < m; ++i) {
     // 读入每条边
        int a, b;
        scanf("%d %d", &a, &b);
        add(a, b);  // 把b插入a的边表
        d[b]++;  // b的入度加一
    }
    top_sort();
    return 0;
}
2.1.2 求出字典序最大/最小的拓扑序
#include <bits/stdc++.h>

using namespace std;

int const N = 1e5 + 10;
int e[N], ne[N], h[N], idx, d[N];
int n, m;
vector<int> ans;

// 建立邻接表
void add(int a, int b) {
   
    e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}

// 拓扑排序
void top_sort() {
   
    priority_queue<int, vector<int>, greater<int>> q;  // 这里是求字典序最小的拓扑序,如果求字典序最大的,那么改成 priority_queue<int, vector<int>, less<int>> q;
    for (int i = 1; i <= n; ++i) if (!d[i]) q.push(i);  // 把入度为0的点加入队列
    // 当队列不为空时
    while (q.size()) {
   
        auto t = q.top();  // 取队头
        q.pop();  // 队头出队
        ans.push_back(t);  // 把这个数字放入答案序列
        for (int i = h[t]; i != -1; i = ne[i]) {
     // 枚举所有队头元素相邻的元素
            int j = e[i];
            d[j]--;  // 队头元素出队相当于把与队头元素相连的元素的入度减一
            if (!d[j]) q.push(j);  // 把入度为0的元素放入队列
        }
    }
    for (int i = 0; i < ans.size(); ++i) {
   
        cout << ans[i];
        if (i != ans.size() - 1) cout << " ";
    }
    cout << endl;
}

int main() {
   
    while (scanf("%d%d", &n, &m) != 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值