有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。
每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:
如果 x == y,那么两块石头都会被完全粉碎;
如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0。
思路:
把这道题想象成,将一堆石头划分成两堆重量最接近的石头,相撞之和剩下的石头最小
动态规划5部曲:
1、确定动态数组及下标含义
dp[j] 代表容量为j 的背包一共可以放dp[j]重量的石头
2、确定递推公式
01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
本题是:dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
3、dp数组初始化
dp[j]中的j表示容量就是所有石头的重量和。
提示中给出1 <= stones.length <= 30,1 <= stones[i] <= 1000,所以最大重量就是30 * 1000 。
而要求的target其实只是最大重量的一半,所以dp数组开到15000,也可以把石头遍历一遍,计算出石头总重量 然后除2,得到dp数组的大小。

该博客介绍了如何使用动态规划解决LeetCode中的问题1049,即找到最后一块石头的最小重量。通过将问题转化为找到两堆石头重量最接近的划分,博主详细阐述了动态规划的5步法,并提供了具体的递推公式和数组初始化策略。最终目标是找到石头总重量的一半,使得两堆石头相撞后剩下的重量最小。
最低0.47元/天 解锁文章
709

被折叠的 条评论
为什么被折叠?



