最后一块石头的重量Ⅱ---leetcode1049

该博客介绍了如何使用动态规划解决LeetCode中的问题1049,即找到最后一块石头的最小重量。通过将问题转化为找到两堆石头重量最接近的划分,博主详细阐述了动态规划的5步法,并提供了具体的递推公式和数组初始化策略。最终目标是找到石头总重量的一半,使得两堆石头相撞后剩下的重量最小。
摘要由CSDN通过智能技术生成

 

有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。

每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:

如果 x == y,那么两块石头都会被完全粉碎;
如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0。

思路:

把这道题想象成,将一堆石头划分成两堆重量最接近的石头,相撞之和剩下的石头最小

动态规划5部曲:

1、确定动态数组及下标含义

dp[j] 代表容量为j 的背包一共可以放dp[j]重量的石头

2、确定递推公式

01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

本题是:dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);

3、dp数组初始化

dp[j]中的j表示容量就是所有石头的重量和。

提示中给出1 <= stones.length <= 30,1 <= stones[i] <= 1000,所以最大重量就是30 * 1000 。

而要求的target其实只是最大重量的一半,所以dp数组开到15000,也可以把石头遍历一遍,计算出石头总重量 然后除2,得到dp数组的大小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

目标成为slam大神

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>