ControlNeXt: Powerful and Efficient Control for Image and Video Generation(2024,8)

ControlNeXt: Powerful and Efficient Control for Image and Video Generation(2024,8)

paper
Github

进一步在ControlNet上进行了改进,主要针对一下两点

  1. 对于每一个模块添加一个Zero-Conv也会占用很多显存.
  2. Zero-Conv两个模态的输出的mean、var具有差异,导致收敛很慢.

ControlXt_2024-08-19_

针对1,使用一个轻量级的ResBlock进行替换,并且微调很小一部分参数,来替代原来的网络.

ControlXt_2024-08-19_

针对2,使用了Cross-Normalization,就是将在ResNet添加一个Normlization,来学习一个Mean、Var和原来输出类似的参数.具体如下:

首先对于输入 x x x,计算原始模型的 μ , σ \mu,\sigma μ,σ

μ m = 1 n ∑ i = 1 n x m , i , σ m 2 = 1 n ∑ i = 1 n ( x m , i − μ m ) 2 . \boldsymbol{\mu}_m=\frac1n\sum_{i=1}^n\boldsymbol{x}_{m,i} ,\\\boldsymbol{\sigma}_m^2=\frac1n\sum_{i=1}^n(\boldsymbol{x}_{m,i}-\boldsymbol{\mu}_m)^2 . μm=n1i=1nxm,i,σm2=n1i=1n(xm,iμm)2.

然后使用这两个参数来进行Normlization.

x ^ c = x c − μ m σ m 2 + ϵ ∗ γ , \hat{\boldsymbol{x}}_c=\frac{\boldsymbol{x}_c-\boldsymbol{\mu}_m}{\sqrt{\boldsymbol{\sigma}_m^2+\boldsymbol{\epsilon}}}*\gamma, x^c=σm2+ϵ xcμmγ,

需要注意的是,只有scale参数 γ \gamma γ,而没有shift参数.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东风中的蒟蒻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值