RestoreFormer++: Towards Real-World Blind Face Restoration from Undegraded Key-Value Pairs(IEEE,2023

RestoreFormer++: Towards Real-World Blind Face Restoration from Undegraded Key-Value Pairs(IEEE,2023,8)

Paper
GitHub

动机:认为之前的模型都只关注了图像的纹理信息,而忽视了人脸的细节信息,本文采用多尺度、交叉注意力的方式引入模型的语义信息.

Reformer++_2024-09-04_

总体可以分为两大部分:

  • Encoder和Decoder部分,Encoder和Decoder部分整体类似于transformer,只不过QKV并不是采用的Linear,而是Conv2D来进行映射的

Reformer++_2024-09-04_

  • VQVAE部分.VQVAE在Encoder和Decoder中间的潜空间进行的,并且VQVAE的输出作为Decoder的Q来进行Cross Attention,作者认为之间构建的Facial Component Dictionary并没有包含足够的语义信息,通过VQVAE进行编码的ROHQD能够包含更多的细节信息.

  • EDM,Extending Degraded Model,为了构建和真实世界类似的模糊的数据集,必须要使用一个模型模拟真实世界图像的退化过程.本文这个EDM缝合和高斯噪声、雾化等过程.

另吐槽:本文用了大量的辅助loss函数,似乎为了增强指标,具体有perceptual loss、discriminator loss、identity loss,并且判别损失不仅用在图像,也用在了对人脸关键部位的判别上.

TODO:之后在做超分的任务时可以关注一下这个EDM构造数据集的做法.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东风中的蒟蒻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值