【Redis 内存淘汰】


Redis内存淘汰机制

概述

Redis是基于内存存储,常用于数据的缓存,所以Redis提供了对键的过期时间的设置,实现了几种淘汰机制便于适应各种场景。


设置过期时间
我们可以在设置键时设置expire time,也可以在运行时给存在的键设置剩余的生存时间,不设置则默认为-1,设置为-1时表示永久存储。

Redis清除过期Key的方式

定期删除+惰性删除

定期删除

Redis设定每隔100ms随机抽取设置了过期时间的key,并对其进行检查,如果已经过期则删除。
为什么是随机抽取? 因为如果存储了大量数据,全部遍历一遍是非常影响性能的!

惰性删除

每次获取key时会对key进行判断是否还存活,如果已经过期了则删除。


注意:Redis中过期的key并不会马上删除,因为定期删除可能正好没抽取到它,我们也没有访问它触发惰性删除

Redis内存淘汰机制

思考一下,如果定期删除漏掉了很多过期的key,而我们也没有再去访问它,如果不加处理,很可能导致内存耗尽。


Redis配置文件中可以设置maxmemory,内存的最大使用量,到达限度时会执行内存淘汰机制

Redis中的内存淘汰机制:

没有配置时,默认为no-eviction

名称描述
volatile-lru已设置过期时间的数据集中挑选最近最少使用的数据淘汰
volatile-lfu从已设置过期时间的数据集中挑选最不经常使用的数据淘汰
volatile-ttl从已设置过期时间的数据集中挑选将要过期的数据淘汰
volatile-random从已设置过期时间的数据集中挑选任意数据淘汰
allkeys-lru当内存不足写入新数据时淘汰最近最少使用的Key
allkeys-random当内存不足写入新数据时随机选择key淘汰
allkeys-lfu当内存不足写入新数据时移除最不经常使用的Key
no-eviction当内存不足写入新数据时,写入操作会报错,同时不删除数据
  • volatile为前缀的策略都是从已过期的数据集中进行淘汰。
  • allkeys为前缀的策略都是面向所有key进行淘汰。
  • LRU(least recently used)最近最少用到的。
  • LFU(Least Frequently Used)最不常用的。
  • 它们的触发条件都是Redis使用的内存达到阈值时。
### Redis 内存淘汰策略详解 Redis 是一种基于内存的键值存储系统,在实际运行过程中可能会遇到内存不足的情况。为了应对这种情况,Redis 提供了几种不同的内存淘汰策略来管理可用内存。 #### 常见的内存淘汰策略 以下是几种常见的 Redis 内存淘汰策略及其工作原理: 1. **noeviction**: 当内存达到上限时,新写入操作会返回错误,而不会删除任何现有数据[^1]。 2. **allkeys-lru**: 删除最近最少使用的键(Least Recently Used, LRU),适用于大多数缓存场景。 3. **volatile-lru**: 仅针对设置了过期时间的键执行 LRU 淘汰策略。 4. **allkeys-random**: 随机删除任意键,适合于不需要精确控制哪些数据被保留的应用场景。 5. **volatile-random**: 只随机删除带有 TTL(Time To Live)属性的键。 6. **volatile-ttl**: 优先删除即将到期的数据项,即具有较短剩余生存时间的键。 每种策略都有其特定适用范围和优缺点,因此选择哪种策略取决于具体应用场景的需求。 #### 如何配置 Redis内存淘汰策略? 可以通过修改 `redis.conf` 文件中的参数或者通过命令动态调整来设置相应的淘汰机制。下面展示两种方式实现这一目标的方法: - 修改配置文件:打开 redis 安装目录下的 `redis.conf` 文件找到并编辑如下行: ```conf maxmemory-policy noeviction ``` 将上述行更改为期望采用的具体政策名称即可生效;例如切换至 allkeys-lru,则应设为: ```conf maxmemory-policy allkeys-lru ``` - 使用 CONFIG SET 命令实时更改当前实例的行为而不重启服务: ```bash CONFIG SET maxmemory-policy volatile-lru ``` 注意每次改动后需确认新的设定已被接受且正确实施,可通过以下指令查看现况状态: ```bash CONFIG GET maxmemory* ``` 此命令将显示目前的最大允许容量以及所选的回收方案详情。 #### 工作流程概述 当 Redis 达到指定最大内存限制(`maxmemory`)之后,它便会依据选定好的淘汰算法自动清理部分占用空间较大的对象以便腾出更多位置给新增加的内容。整个过程完全自动化无需人为干预,但合理规划初始分配量级与挑选恰当清除法则对于维持高效稳定的服务至关重要。 ```python import redis # 创建连接池 pool = redis.ConnectionPool(host='localhost', port=6379, decode_responses=True) r = redis.Redis(connection_pool=pool) # 设置最大内存大小 (单位字节),这里假设为 1GB r.config_set('maxmemory', '1073741824') # 设定淘汰策略为 allkeys-lru r.config_set('maxmemory-policy', 'allkeys-lru') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值