44、Flink 的默认窗口剔除器 evictor 代码示例

1、CountEvictor

仅记录用户指定数量的元素,一旦窗口中的元素超过这个数量,多余的元素会从窗口缓存的开头移除。

2、DeltaEvictor

接收 DeltaFunction 和 threshold 参数,计算最后一个元素与窗口缓存中所有元素的差值,并移除差值大于或等于 threshold 的元素。

3、TimeEvictor

接收 interval 参数,以毫秒表示,它会找到窗口中元素的最大 timestamp max_ts,并移除比 max_ts - interval 小的所有元素。

注意

Flink 不对窗口中元素的顺序做任何保证,即使 evictor 从窗口缓存的开头移除一个元素,这个元素也不一定是最先或者最后到达窗口的;

默认情况下,所有内置的 evictor 逻辑都在调用窗口函数前执行;

4、代码示例

package com.xu.flink.datastream.day09;

import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.functions.windowing.delta.DeltaFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.evictors.CountEvictor;
import org.apache.flink.streaming.api.windowing.evictors.DeltaEvictor;
import org.apache.flink.streaming.api.windowing.evictors.TimeEvictor;
import org.apache.flink.streaming.api.windowing.triggers.EventTimeTrigger;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;

import java.time.Duration;

/**
 * Evictor 可以在 trigger 触发后、调用窗口函数之前或之后从窗口中删除元素
 * evictBefore() 包含在调用窗口函数前的逻辑,在调用窗口函数之前被移除的元素不会被窗口函数计算
 * evictAfter() 包含在窗口函数调用之后的逻辑
 * <p>
 * -默认情况下,所有内置的 evictor 逻辑都在调用窗口函数前执行-
 * CountEvictor: 仅记录用户指定数量的元素,一旦窗口中的元素超过这个数量,多余的元素会从窗口缓存的开头移除。
 * DeltaEvictor: 接收 DeltaFunction 和 threshold 参数,计算最后一个元素与窗口缓存中所有元素的差值,并移除差值大于或等于 threshold 的元素。
 * TimeEvictor: 接收 interval 参数,以毫秒表示,它会找到窗口中元素的最大 timestamp `max_ts`,并移除比 `max_ts - interval` 小的所有元素。
 * <p>
 * 注意:Flink 不对窗口中元素的顺序做任何保证,即使 evictor 从窗口缓存的开头移除一个元素,这个元素也不一定是最先或者最后到达窗口的。
 */
public class _12_WindowDefaultEvictors {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        DataStreamSource<String> input = env.socketTextStream("localhost", 8888);

        // 测试时限制了分区数,生产中需要设置空闲数据源
        env.setParallelism(2);

        // 事件时间需要设置水位线策略和时间戳
        SingleOutputStreamOperator<Tuple2<String, Long>> map = input.map(new MapFunction<String, Tuple2<String, Long>>() {
            @Override
            public Tuple2<String, Long> map(String input) throws Exception {
                String[] fields = input.split(",");
                return new Tuple2<>(fields[0], Long.parseLong(fields[1]));
            }
        });

        SingleOutputStreamOperator<Tuple2<String, Long>> watermarks = map.assignTimestampsAndWatermarks(WatermarkStrategy.<Tuple2<String, Long>>forBoundedOutOfOrderness(Duration.ofSeconds(0))
                .withTimestampAssigner(new SerializableTimestampAssigner<Tuple2<String, Long>>() {
                    @Override
                    public long extractTimestamp(Tuple2<String, Long> input, long l) {
                        return input.f1;
                    }
                }));

        //1、CountEvictor: 仅记录用户指定数量的元素,一旦窗口中的元素超过这个数量,多余的元素会从窗口缓存的开头移除(默认)。
        //1.1 doEvictAfter = false
        //a,1718157600000
        //b,1718157600000
        //c,1718157600000
        //
        //a,1718157602000
        //b,1718157602000
        //c,1718157602000
        //
        //a,1718157604000
        //b,1718157604000
        //c,1718157604000
        //
        //a,1718157605001
        //b,1718157605001
        //
        //Window 的开始和结束时间=>1718157600000-1718157605000
        //2> a
        //Window 的开始和结束时间=>1718157600000-1718157605000
        //1> b
        //Window 的开始和结束时间=>1718157600000-1718157605000
        //1> c
        //
        //c,1718157605001
        //
        //1.2 doEvictAfter = true
        //a,1718157600000
        //b,1718157600000
        //c,1718157600000
        //
        //a,1718157602000
        //b,1718157602000
        //c,1718157602000
        //
        //a,1718157604000
        //b,1718157604000
        //c,1718157604000
        //
        //a,1718157605001
        //b,1718157605001
        //
        //Window 的开始和结束时间=>1718157600000-1718157605000
        //2> a
        //2> a
        //2> a
        //Window 的开始和结束时间=>1718157600000-1718157605000
        //1> b
        //1> b
        //1> b
        //Window 的开始和结束时间=>1718157600000-1718157605000
        //1> c
        //1> c
        //1> c
        //
        //c,1718157605001
        //
        //2、DeltaEvictor:接收 DeltaFunction 和 threshold 参数,计算最后一个元素与窗口缓存中所有元素的差值,并移除差值大于或等于 threshold 的元素。
        //a,1718157600000
        //b,1718157600000
        //c,1718157600000
        //
        //a,1718157602000
        //b,1718157602000
        //c,1718157602000
        //
        //a,1718157604000
        //b,1718157604000
        //c,1718157604000
        //
        //a,1718157605001-最后的元素
        //b,1718157605001-最后的元素
        //
        //first=>(a,1718157600000),last=>(a,1718157604000)
        //first=>(a,1718157602000),last=>(a,1718157604000)
        //first=>(a,1718157604000),last=>(a,1718157604000)
        //first=>(b,1718157600000),last=>(b,1718157604000)
        //first=>(b,1718157602000),last=>(b,1718157604000)
        //first=>(b,1718157604000),last=>(b,1718157604000)
        //first=>(c,1718157600000),last=>(c,1718157604000)
        //first=>(c,1718157602000),last=>(c,1718157604000)
        //first=>(c,1718157604000),last=>(c,1718157604000)
        //
        //Window 的开始和结束时间=>1718157600000-1718157605000
        //Window 的开始和结束时间=>1718157600000-1718157605000
        //Window 的开始和结束时间=>1718157600000-1718157605000
        //2> a
        //2> a
        //2> a
        //c,1718157605001-最后的元素
        //
        //3、TimeEvictor:接收 interval 参数,以毫秒表示,它会找到窗口中元素的最大 timestamp `max_ts`,并移除比 `max_ts - interval` 小的所有元素
        //a,1718157600000
        //b,1718157600000
        //c,1718157600000
        //
        //a,1718157602000
        //b,1718157602000
        //c,1718157602000
        //
        //a,1718157604000
        //b,1718157604000
        //c,1718157604000
        //
        //a,1718157605001
        //b,1718157605001
        //
        //Window 的开始和结束时间=>1718157600000-1718157605000
        //2> a
        //Window 的开始和结束时间=>1718157600000-1718157605000
        //1> b
        //Window 的开始和结束时间=>1718157600000-1718157605000
        //1> c
        //
        //c,1718157605001
        watermarks.keyBy(e -> e.f0)
                .window(TumblingEventTimeWindows.of(Duration.ofSeconds(5)))
                .trigger(EventTimeTrigger.create())
                .evictor(TimeEvictor.of(Duration.ofSeconds(1), false))
//                .evictor(CountEvictor.of(1, true))
//                .evictor(DeltaEvictor.of(1.0, new DeltaFunction<Tuple2<String, Long>>() {
//                    @Override
//                    public double getDelta(Tuple2<String, Long> first, Tuple2<String, Long> last) {
//                        System.out.println("first=>"+first+",last=>"+last);
//                        if(first.f0.startsWith("a") && last.f0.startsWith("a")){
//                            return 0.0;
//                        }
//                        return 2.0;
//                    }
//                }, false))
                .apply(new WindowFunction<Tuple2<String, Long>, String, String, TimeWindow>() {
                    @Override
                    public void apply(String s, TimeWindow timeWindow, Iterable<Tuple2<String, Long>> iterable, Collector<String> collector) throws Exception {
                        System.out.println("Window 的开始和结束时间=>" + timeWindow.getStart() + "-" + timeWindow.getEnd());

                        for (Tuple2<String, Long> tuple2 : iterable) {
                            collector.collect(tuple2.f0);
                        }
                    }
                })
                .print();

        env.execute();
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猫猫爱吃小鱼粮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值