如何理解高斯过程(四):核函数

一、数学公式

参考:https://zhuanlan.zhihu.com/p/669885380

高斯核:

Matern核:

线性核:

二、核函数图形及意思

  • 高斯核函数:

l^{2}可以理解成方差,方差越大,分布越集中,两个点越近,对应的核函数值越大

对于高斯过程结果的影响

l影响相邻数值之间的差异程度,l越大,差异性大,l越小,差异性越小

sigma影响幅值。

当l=0.5 sigma=2 时候的高斯过程

先验图:可以看到蓝色的范围为1.96*sigma^{2}  后验图: 

                     

当l=1 sigma=2 时候的高斯过程 

l增大,点和点之间的差异性降低,生成的曲线更加光滑

先验图:                                                             后验图: 

                     

当l=1 sigma=1 时候的高斯过程 

sigma减小,不确定性降低,已知点临近处的蓝色区域明显减小

先验图:                                                             后验图: 

                        

  • 马特核函数:

\nu控制可导数性,\nu越小,越尖

对于高斯过程回归(Gaussian Process Regression, GPR)来说,核函数(也称为协方差函数)是非常重要的。核函数定义了两个输入样本之间的相似性度量,它决定了高斯过程的平滑性和灵活性。 调整核函数可以对高斯过程回归的性能产生重要影响。以下是一些调整核函数的常见方法: 1. 高斯核函数的参数调整:高斯核函数高斯过程回归最常用的核函数之一。它的形式为 K(x, x') = σ²exp(-||x-x'||² / (2l²)),其中 σ² 是方差参数,l 是长度尺度参数。调整这两个参数可以影响高斯过程的平滑性和灵活性。通常可以通过交叉验证或优化算法来寻找最优的参数值。 2. 使用其他核函数:除了高斯核函数,还有其他各种核函数可供选择,如线性核函数、多项式核函数、周期核函数等。根据问题的特点,选择合适的核函数可能会提高模型的拟合能力。 3. 组合多个核函数:将多个核函数进行线性组合或非线性组合,可以得到更加灵活的核函数。例如,将不同尺度的高斯核函数加权求和,可以获得自适应的核函数。 4. 引入噪声模型:在高斯过程回归中,通常会假设存在一个噪声模型,用于描述观测数据中的噪声。噪声模型可以通过调整噪声方差来控制模型的平滑程度。 5. 使用核函数选择算法:有时候,手动调整核函数的参数和选择合适的核函数可能会比较困难。因此,有一些自动化的核函数选择算法可供使用,例如基于贝叶斯优化的自动机器学习算法。 总之,调整核函数高斯过程回归中的一个重要步骤,可以通过调整核函数的参数、选择合适的核函数、组合多个核函数、引
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值