【11月组队学习】 网络设计的技巧

写在前面:机器学习的trick非常多,在训练模型的时候如何判断哪些trick有效更加重要。


关于Local minima和Saddle point

 在深度学习等搭建的多参数模型中,更多的是可逃离的saddle point。从实验中也可以看出,随着loss的变化,在不断接近局部最小值,但从未达到。


1 批处理

大的Batch在处理时间上与小的Batch处理时间差距不大,利用大一点的Batch可以提高网络运行效率;相同的训练集精度,小的Batch在测试集上表现往往更好。

 2 动量(Mnmentum)

“惯性”

 3 自适应学习率

学习率太大会导致loss在山谷上方来回震荡

 1.Adagrad

在学习率的基础上除以历次梯度的平方和的平均值。

 2.RMSProp

给予历史梯度一定的权重

 Adam:RMSProp+Momentum,在pytorch中的预设参数已经能训练得到一个相对好的结果

Learning Rate Scheduling

(learning rate decay)学习率随着训练时间增长,应当有一个变小的趋势。

(warm up)学习率逐渐变大,为了收集更多数据,统计得到的方差会更加精确

 5 one-hot编码

分类问题中避免标签本身数字的大小关系带来的错误认知

6 损失函数的选择

之前已经总结过一些了,分类问题中经常会用到交叉熵损失函数

softmax作为一种“归一化”方式,可以拉大样本训练结果之间的差异。

pytorch中softmax已经内嵌到交叉熵损失函数中

7 Batch Normalization(BN)

在训练阶段:对每一层的输入特征进行标准化。不同的特征在相同或类似的取值范围内,error surface更平滑,会更容易训练。

激活函数的前后都有尝试BN,差别不大。

在考虑BN之后是牵一发而动全身,Batch size要足够大,才能表征数据分布

 当数据自身分布特点并不是均值为0......

β和γ是需要学习的参数,初始化时γ为全1向量,β为0向量.。

在测试过程中:积累到一定的Batch要求数目之后再进行测试是不显示的,所以我们会动态利用训练过程中得到的均值和方差(pytorch测试时也是这样做的)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值