题目链接:点击查看
题目描述:
已知字母
A-Z
可以表示成数字
1-26
。给定一个数字串,求有多少种不同的字符串等价于这个数字串。
输入输出:
输入:s = "12" 输出:2
输入:s = "226" 输出:3
题目分析:
这是一道很经典的动态规划题,难度不大但是十分考验耐心。这是因为只有
1-26
可以表示字母,因此对于一些特殊情况,比如数字 0
或者当相邻两数字大于
26 时,需要有不同的状态转移方程,详见如下代码。
动态规划解码方法

这是一篇关于使用动态规划解决字母与数字对应解码问题的博客。题目要求根据数字串找出所有可能的字母组合,输入输出示例给出了不同场景下的解码数量。代码中详细解释了状态转移方程,特别是处理特殊条件如0和大于26的数字。
最低0.47元/天 解锁文章
386

被折叠的 条评论
为什么被折叠?



