java实现 HDU 2553 n皇后解的数量

在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。
你的任务是,对于给定的N,求出有多少种合法的放置方法。

Input
共有若干行,每行一个正整数N≤10,表示棋盘和皇后的数量;如果N=0,表示结束。

Output
共有若干行,每行一个正整数,表示对应输入行的皇后的不同放置数量。

Sample Input
1
8
5
0

Sample Output
1
92
10

代码

import java.util.Scanner;

public class n皇后的解的数量 {
	
	private static final int MAXNUM = 15;
	private static int n = 0;
	private static int cnt = 0;
	private static int[][] chess = new int [MAXNUM][MAXNUM];
	private static int[] ans = new int [MAXNUM];
	
	public static void main(String[] args) {
		//存数组里,否则会超时
		for(n = 1; n <= 10; n++){
	    	cnt = 0;
	        solve(0);
	        ans[n] = cnt;
	    }
		Scanner scan = new Scanner(System.in);
		while((n = scan.nextInt())!=0){	
			System.out.println(ans[n]);
		}
		scan.close();
	}
	
	public static void solve(int row) {
		if(row == n) {
			cnt++;
			return ;
		}
		for(int i = 0; i < n; i++) {
			if(valid(row, i)) {
                chess[row][i] = 1;
                solve(row + 1);
                chess[row][i] = 0;
			}
		}
	}
	
	 private static boolean valid(int row, int col) {
	 		//上方是否有棋子
	        for (int i = 0; i < row; i++) {
	            if (chess[i][col] == 1) {
	                return false;
	            }
	        }
	        //右上是否有棋子
	        for (int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++) {
	            if (chess[i][j] == 1) {
	                return false;
	            }
	        }
	        //左上是否有棋子
	        for (int i = row - 1, j = col - 1; i >= 0 && j >= 0; i--, j--) {
	            if (chess[i][j] == 1) {
	                return false;
	            }
	        }
	        return true;
	    }
}
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页