349.两个数组的交集 【简单】
解法:
class Solution:
def intersection(self, nums1: List[int], nums2: List[int]) -> List[int]:
return list(set(nums1) & set(nums2))
#return list(set(nums1).intersection(set(nums2)))
53.最大子数组和【中等】
给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组 是数组中的一个连续部分。
解法:
使用动态规划的方法,算法思想:定义状态(子问题),状态转移方程,思考初始值、输出
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
size = len(nums)
if size == 0:
return 0
sub = [0 for _ in range(size)]
sub[0] = nums[0]
for i in range(1, size):
if sub[i-1] >= 0:
sub[i] = sub[i-1]+nums[i]
else:
sub[i] = nums[i]
maxsub = max(sub)
return maxsub
以nums[i]为结尾的子数组和,若以num[i]为结尾的sub[i]大于等于零,则继续加上num[i+1]记作sub[i+1],最后去找sub数组里最大的值,即最大子数组和。
55.跳跃游戏【中等】
给定一个非负整数数组 nums ,你最初位于数组的 第一个下标 。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个下标。
(嘤嘤嘤,解题思路很重要,不然,可能花几个小时整出来的代码还是会有漏算的情况)
class Solution:
def canJump(self, nums: List[int]) -> bool:
n=len(nums)
max_i = 0
for i in range(n):
if max_i >= i and max_i < i+nums[i]:
max_i = i+nums[i]
return max_i >= i
把能跳到最后一个下标之后的过程分解为:当前下标能跳到的最远处比已知的最远处值要大,且已知的最远处值等于或超过当前下标,则更新最远处的值。遍历所有下标,最终的最远处与最后一个下标相比,大于或等于则表示能够到达最后一个下标!
32. 最长有效括号
给你一个只包含 '(' 和 ')' 的字符串,找出最长有效(格式正确且连续)括号子串的长度。
class Solution:
def longestValidParentheses(self, s: str) -> int:
n = len(s)
dp = [0]*n
if n == 0:
return 0
for i in range(n):
if i > 0 and s[i] == ')':
if s[i-1] == ')' and i - dp[i - 1] - 1 >= 0 and s[i - dp[i - 1] - 1] == "(":
dp[i] = 2+dp[i-1]+dp[i-dp[i-1]-2]
elif s[i-1] == '(':
dp[i] = 2+dp[i-2]
return max(dp)
124. 二叉树中的最大路径和
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def maxPathSum(self, root: Optional[TreeNode]) -> int:
def dp(node):
nonlocal val
if not node:
return 0
left = max(0,dp(node.left))
right = max(0,dp(node.right))
lmr = node.val + left + right
ret = node.val +max(left,right)
val = max(lmr,val,ret)
return ret
val = float('-inf')
dp(root)
return val
1023

被折叠的 条评论
为什么被折叠?



