深度学习代码片段收集

本文介绍了如何在PyTorch中利用`sum(p.numel()forpinmodel.parameters()ifp.requires_grad)`计算模型中可训练参数的总量,强调了`requires_grad`属性和`numel()`方法在计算过程中的作用。
摘要由CSDN通过智能技术生成

计算训练参数量

print('number of model params', sum(p.numel() for p in model.parameters() if p.requires_grad))

sum(p.numel() for p in model.parameters() if p.requires_grad )可以用来计算参与训练的参数量

model.parameters() 返回模型中所有参数的迭代器。

if p.requires_grad: 这部分使用了一个条件判断,仅考虑那些 requires_grad 属性为 True 的参数。requires_grad 是 PyTorch 中的一个属性,用于指示是否要在参数上计算梯度。

p.numel(): 对于每个满足条件的参数,p.numel() 返回该参数的元素数量,即参数的总数量。numel() 是 PyTorch 张量对象的方法,用于返回张量中元素的总数。

最后,sum(…) 对所有参数的元素数量求和,得到的结果就是模型中所有可学习参数的总数量。

情绪识别深度学习通常涉及使用神经网络模型来解析图像、语音或文本数据,以推断出其中蕴含的情感状态。以下是基本的情绪识别深度学习代码分析概述: 1. **数据预处理**:收集和整理包含人脸表情图片(如FER2013)、音频片段或文本数据的数据集,并将其转换成适合模型输入的标准化格式。 ```python import pandas as pd from keras.preprocessing.image import ImageDataGenerator # 对图像数据进行预处理 train_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory(train_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='categorical') ``` 2. **模型构建**:常用的是卷积神经网络(CNN)或循环神经网络(RNN)结合情感分类层,如BERT用于文本情感分析。例如,使用Keras或PyTorch创建模型: ```python from tensorflow.keras.applications.vgg16 import VGG16 from tensorflow.keras.layers import GlobalAveragePooling2D, Dense model = VGG16(weights='imagenet', include_top=False, input_shape=(img_height, img_width, 3)) x = GlobalAveragePooling2D()(model.output) x = Dense(128, activation='relu')(x) predictions = Dense(num_classes, activation='softmax')(x) model = Model(inputs=model.input, outputs=predictions) ``` 3. **训练模型**:使用优化器(如Adam),损失函数(如交叉熵)以及适当的评估指标(如accuracy)训练模型: ```python model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) history = model.fit(train_generator, epochs=num_epochs, validation_data=val_generator) ``` 4. **模型评估与预测**:在测试集上验证模型性能并进行实际情感预测: ```python test_loss, test_acc = model.evaluate(test_generator) predicted_emotions = model.predict(new_image) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>