计算训练参数量
print('number of model params', sum(p.numel() for p in model.parameters() if p.requires_grad))
sum(p.numel() for p in model.parameters() if p.requires_grad )可以用来计算参与训练的参数量
model.parameters() 返回模型中所有参数的迭代器。
if p.requires_grad: 这部分使用了一个条件判断,仅考虑那些 requires_grad 属性为 True 的参数。requires_grad 是 PyTorch 中的一个属性,用于指示是否要在参数上计算梯度。
p.numel(): 对于每个满足条件的参数,p.numel() 返回该参数的元素数量,即参数的总数量。numel() 是 PyTorch 张量对象的方法,用于返回张量中元素的总数。
最后,sum(…) 对所有参数的元素数量求和,得到的结果就是模型中所有可学习参数的总数量。
本文介绍了如何在PyTorch中利用`sum(p.numel()forpinmodel.parameters()ifp.requires_grad)`计算模型中可训练参数的总量,强调了`requires_grad`属性和`numel()`方法在计算过程中的作用。
999

被折叠的 条评论
为什么被折叠?



