知福致福
码龄4年
关注
提问 私信
  • 博客:176,894
    社区:3
    问答:44
    动态:1,326
    178,267
    总访问量
  • 153
    原创
  • 186,971
    排名
  • 201
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山西省
  • 加入CSDN时间: 2020-10-04
博客简介:

m0_51312071的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    5
    当前总分
    1,323
    当月
    11
个人成就
  • 获得337次点赞
  • 内容获得15次评论
  • 获得578次收藏
  • 代码片获得998次分享
创作历程
  • 12篇
    2024年
  • 65篇
    2023年
  • 38篇
    2022年
  • 32篇
    2021年
  • 6篇
    2020年
TA的专栏
  • C/C++学习笔记
    11篇
  • torch框架
    3篇
  • 后端框架学习
    1篇
  • 杂七杂八
    2篇
  • 办公使用
    2篇
  • 数学
    1篇
  • 前端学习笔记
    19篇
  • 课程相关
    8篇
  • 电脑
    8篇
  • python
    27篇
  • android开发
    1篇
  • 论文笔记
    15篇
  • 开发环境
    10篇
  • 深度学习
    16篇
  • java
    4篇
  • 数据结构
    12篇
兴趣领域 设置
  • 数据结构与算法
    排序算法推荐算法
  • 人工智能
    opencvcaffetensorflowmxnetpytorchnlpscikit-learn聚类集成学习迁移学习分类回归
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

npm怎么迁移到pnpm

但是安装之后使用pnpm install 就发现包全被移动到ignored文件夹下面了,还报错。通过npm安装,安装好的pnpm在node_module下面,感觉不能用的亚子。配置pnpm,之前只是安装了,但没有配置,所以无法识别pnpm命令。bin 文件夹下面只有这个文件,既没有exe文件也没有cmd文件。看报错原因说使用了两个不同的包管理器,那应该怎么办呢?把pnpm.exe所在目录的路径添加到环境变量里面了。下载的vue3模板用到了pnpm,就安装了一下。通过下面的命令安装成功了。
原创
发布博客 2024.04.14 ·
695 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

webstorm修改默认存储和配置位置

webstorm
原创
发布博客 2024.04.14 ·
793 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

webstorm修改默认存储和配置位置

webstorm
原创
发布博客 2024.04.14 ·
676 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

将神经网络加到列表里面之后,用.to(device)函数迁移参数到gpu上失败

使用[nn.Linear(10,10) for i in range(n)]生成多个相同的神经网络被重复调用,独自训练参数,结果参数迁移的时候发现只有列表的第一个对象的参数被迁移到gpu上了,其他参数都没有被迁移过去。nn.ModuleList 这个类,可以把任意 nn.Module 的子类 (比如 nn.Conv2d, nn.Linear 之类的) 加到这个 list 里面,类似于Python 自带的 list。如果只使用python自带的list,会发现。
原创
发布博客 2024.04.13 ·
521 阅读 ·
4 点赞 ·
0 评论 ·
1 收藏

梯度反向传播过程是如何处理repeat函数的

梯度反向传播
原创
发布博客 2024.04.04 ·
663 阅读 ·
10 点赞 ·
0 评论 ·
3 收藏

梯度:般在神经网络里面是一个batch清空一次梯度还是一个epoch清空一次梯度?

通常,在神经网络训练中,是在每个 mini-batch 处理完成后清空一次梯度,而不是在每个 epoch 结束后清空一次梯度。这是因为在每个 mini-batch 中,模型参数的梯度是根据当前 mini-batch 的损失计算得到的,如果不在每个 mini-batch 后清空梯度,梯度会在每个 mini-batch 中累积,导致参数更新不准确。
原创
发布博客 2024.04.03 ·
703 阅读 ·
4 点赞 ·
1 评论 ·
1 收藏

AttributeFrror:DatetimeIndex‘object has no attribute ‘weekofyear‘

使用.isocalendar().week方法再将其转换为列表,再将其转换为pandas的Index对象实现同样的效果。报错,原因,pandas的DatetimeIndex对象的weekofyear已经弃用,解决办法。
原创
发布博客 2024.03.31 ·
539 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

FFPFormer:Take an Irregular Route: Enhance the Decoder of Time-Series Forecasting Transformer

随着物联网(IoT)系统的发展,精确的长期预测方法对决策者评估当前状况并制定未来政策至关重要。目前,Transformer和MLP是两种深度时间序列预测的范式,其中前者因其出色的注意力机制和编码器-解码器架构而更为流行。然而,数据科学家似乎更愿意深入研究编码器,而忽略了解码器。一些研究者甚至采用线性投影来替代解码器,以降低复杂性。我们认为,无论是提取输入序列的特征,还是寻求输入与预测序列之间的关系,即编码器和解码器各自的功能,都至关重要。
原创
发布博客 2024.03.21 ·
809 阅读 ·
30 点赞 ·
0 评论 ·
18 收藏

OneNet:OneNet: Enhancing Time Series Forecasting Models under Concept Drift by Online Ensembling

时间序列预测模型的在线更新旨在通过有效地更新基于流媒体数据的预测模型来解决概念漂移问题。许多算法都是为在线时间序列预测而设计的,一些算法利用跨变量依赖性,而另一些算法则假设变量之间的独立性。考虑到每个数据假设在在线时间序列建模中都有自己的优缺点,我们提出了在线集成网络(OneNet)。它动态地更新并结合了两个模型,一个关注于跨时间维度的依赖关系建模,另一个关注于跨变量依赖关系建模。我们的方法将基于强化学习的方法合并到传统的在线凸规划框架中,允许两个模型与动态调整权重的线性组合。
原创
发布博客 2024.03.21 ·
1362 阅读 ·
25 点赞 ·
1 评论 ·
16 收藏

2023年11月论文:DANCE OF CHANNEL AND SEQUENCE(CSformer)(无源码)

DANCE OF CHANNEL AND SEQUENCE:AN EFFICIENT ATTENTION-BASED APPROACH FORMULTIVARIATE TIME SERIES FORECASTING推荐阅读指数: ★★大意了,没仔细看实验结果和模型图,精度了一篇有点不太行的文章,实验结果只有一张表,模型图又很简单,且机构也很一般。通道独立性导致信息退化,文章提出CSformer来应对这一问题,CSformer中精心设计了两阶段的自注意力机制,该机制可以分别提取特定序列信息和通道信息,同
原创
发布博客 2024.01.11 ·
985 阅读 ·
17 点赞 ·
2 评论 ·
19 收藏

ForecastPFN: Synthetically-Trained Zero-Shot Forecasting

绝大多数时间序列预测方法需要大量的训练数据集。然而,许多现实生活中的预测应用程序只有很少的初始观测值,有时只有40个或更少。因此,在数据稀疏的商业应用中的,大多数时间序列预测方法的适用性受到了限制。(开篇说明课题背景:观测数据少)虽然最近有些工作尝试在非常有限的初始数据设置下(“zero-shot"场景)做预测 ,由于预训练的数据不同,其性能也呈现出不一致性。在我们的工作中,我们采用了一种不同的方法,并设计了(prior-data fitted network),这是第一个纯粹基于新的合成数据分布。
原创
发布博客 2024.01.08 ·
1259 阅读 ·
20 点赞 ·
0 评论 ·
25 收藏

Take an Irregular Route: Enhance the Decoder of Time-Series Forecasting Transformer(FFPformer)

当前,Transformer和MLP是用于深度学习时间序列预测的两种主要范式,其中前者因为其注意力机制和encoder-decoder结构而被更加广泛地应用。然而数据科学家似乎更愿意在encoder上投入研究,decoder往往被忽略。一些研究者甚至试图采用线性映射替代decoder来降低复杂度。(decoder被忽略的现状)我们认为探寻输入和预测序列的联系与提取输入序列的特征同等重要,前者恰好是encoder和decoder的代表功能,具有很大意义。
原创
发布博客 2024.01.07 ·
1128 阅读 ·
24 点赞 ·
1 评论 ·
16 收藏

论文阅读:Large Language Models Are Zero-Shot Time Series Forecasters(2023NIPS)(LLMTime)

对于预测任务:通过将时间序列编码为一系列数字,可以将时间序列预测任务转化为文本里面的next-token预测任务。在大规模预训练语言模型的基础上,文章提出了一些方法用于有效,并(分布转换部分涉及到诸多统计学知识)。在数值补全任务中,文章展示了语言模型(LLMs)如何通过非数值文本自然处理缺失数据,无需插补,如何适应文本侧面信息,并回答问题以帮助解释预测。
原创
发布博客 2023.12.27 ·
1856 阅读 ·
18 点赞 ·
0 评论 ·
23 收藏

lag-llama源码解读(Lag-Llama: Towards Foundation Models for Time Series Forecasting)

文章内容:时间序列预测任务,单变量预测单变量,基于Llama大模型,在zero-shot场景下模型表现优异。创新点,引入滞后特征作为协变量来进行预测。
原创
发布博客 2023.12.27 ·
2047 阅读 ·
22 点赞 ·
1 评论 ·
21 收藏

时间序列分析

时间序列分析
原创
发布博客 2023.12.21 ·
1042 阅读 ·
22 点赞 ·
0 评论 ·
23 收藏

np.random.shuffle

如果需要得到一个新的打乱顺序的数组,可以使用 numpy.random.permutation 函数,它返回一个新的数组,而不修改原始数组。对于多维数组,numpy.random.shuffle 函数会沿着第一个轴(axis 0)打乱数组的顺序。这个函数会直接修改原始数组,而不返回一个新的打乱顺序的数组。numpy.random.shuffle 将打乱数组的各行,但每行内部的元素顺序保持不变。这个函数返回一个新的打乱顺序的数组,而不修改原始数组。在这个示例中,my_array 数组的元素顺序被随机打乱。
原创
发布博客 2023.12.20 ·
1047 阅读 ·
7 点赞 ·
0 评论 ·
13 收藏

torch.tensor vs torch.from_numpy()

torch.tensor函数和torch.from_numpy()函数都可以将numpy array转换为torch tensro,不同之处在于前者共享内存(torch的底层实现就是numpy,所以可以共享),后者开辟新的空间。
原创
发布博客 2023.12.18 ·
594 阅读 ·
8 点赞 ·
0 评论 ·
7 收藏

论文阅读:DSformer:A Double Sampling Transformer for Multivariate Time Series Long-term Prediction

多变量长期预测任务旨在预测未来较长一段时间的数据的变化,从而为决策提供参考。当前模型对时间序列的以下三个特征利用还不充分:全局信息、局部信息、变量相关性。由此文章提出DSformer(double sampling transformer)模型,该模型包含了double sampling(DS) block和 temporal variable attentioon(TVA) block。
原创
发布博客 2023.12.18 ·
865 阅读 ·
7 点赞 ·
2 评论 ·
10 收藏

python注释规范

Python 中的函数注释通常使用文档字符串(docstring)来提供对函数的说明。文档字符串是放置在函数、模块或类的顶部的字符串,用于描述其功能、输入参数、返回值以及其他相关信息。
原创
发布博客 2023.12.14 ·
853 阅读 ·
7 点赞 ·
0 评论 ·
7 收藏

深度学习代码片段收集

深度学习代码片段收集
原创
发布博客 2023.12.14 ·
612 阅读 ·
10 点赞 ·
0 评论 ·
12 收藏
加载更多