
超高维变量筛选
在所有统计学习工具中,回归分析是最流行的方法之一,被广泛用于响应变量y和一系列协变量x之间的关系进行建模。在文献中各种回归分析的模型和方法都在发展,从经典的线性回归到非参数回归。然而在协变量维数p很大时,大多数回归模型和方法可能会严重受损。从协变量中选择一个预测因子子集是有必要的。在现有研究中,广泛通过变量选择方法进行降维,主要分为两种方法:子集选择方法包括逐步回归(Efroymson 1960)、正向选择、向后选择等;惩罚似然方法包括LASSO,非负garrotte, SCAD,弹性网络等。





