高精度加法
容易写错的 :
- 首先判断大小
- 最后进位还要判断
#include <iostream>
#include <vector>
using namespace std;
bool cmp(vector<int> &a, vector<int> &b) {
if (a.size() != b.size()) return a.size() > b.size();
for (int i = (int)a.size() - 1; i >= 0; -- i) {
if (a[i] != b[i]) {
return a[i] > b[i];
}
}
return true;
}
vector<int> add(vector<int> &a, vector<int> &b) {
vector<int> c;
int t = 0;
for (int i = 0; i < a.size(); ++ i) {
t += a[i];
if (i < b.size()) t += b[i];
c.push_back(t % 10);
t /= 10;
}
if (t) c.push_back(t);
while (c.size() > 1 && c.back() == 0) c.pop_back();
return c;
}
int main() {
string a, b;
vector<int> A, B;
cin >> a >> b;
for (int i = (int)a.size() - 1; i >= 0; -- i) A.push_back(a[i] - '0');
for (int i = (int)b.size() - 1; i >= 0; -- i) B.push_back(b[i] - '0');
vector<int> c;
if (cmp(A, B)) {
c = add(A, B);
} else {
c = add(B, A);
}
for (int i = (int)c.size() - 1; i >= 0; -- i) cout << c[i];
}
高精度减法
- (t + 10) % 10,无论如何都能借到位
#include <iostream>
#include <vector>
using namespace std;
bool cmp(vector<int> &a, vector<int> &b) {
if (a.size() != b.size()) return a.size() > b.size();
for (int i = (int)a.size() - 1; i >= 0; -- i) {
if (a[i] != b[i]) {
return a[i] > b[i];
}
}
return true;
}
vector<int> sub(vector<int> &a, vector<int> &b) {
vector<int> c;
int t = 0;
for (int i = 0; i < a.size(); ++ i) {
t = a[i] - t;
if (i < b.size()) t -= b[i];
c.push_back((t + 10) % 10);
if (t < 0) t = 1;
else t = 0;
}
while (c.size() > 1 && c.back() == 0) c.pop_back();
return c;
}
int main() {
string a, b;
vector<int> A, B;
cin >> a >> b;
for (int i = (int)a.size() - 1; i >= 0; -- i) A.push_back(a[i] - '0');
for (int i = (int)b.size() - 1; i >= 0; -- i) B.push_back(b[i] - '0');
vector<int> c;
if (cmp(A, B)) {
c = sub(A, B);
} else {
c = sub(B, A);
cout << "-";
}
for (int i = (int)c.size() - 1; i >= 0; -- i) cout << c[i];
}
高精度乘法
- 高精度乘法与加法的区别主要是每次进位上来的不一定只1,可能大于1,因此,这个进位t要放在循环的条件中
#include <iostream>
#include <vector>
using namespace std;
vector<int> mul(vector<int> &a, int b) {
vector<int> c;
int t = 0;
for (int i = 0; i < a.size() || t; ++ i) {
if (i < a.size()) t += a[i] * b;
c.push_back(t % 10);
t /= 10;
}
while (c.size() > 1 && c.back() == 0) c.pop_back();
return c;
}
int main() {
string a;
int b;
vector<int> A;
cin >> a >> b;
for (int i = (int)a.size() - 1; i >= 0; -- i) A.push_back(a[i] - '0');
vector<int> c = mul(A, b);
for (int i = (int)c.size() - 1; i >= 0; -- i) cout << c[i];
}
高精度除法
- 结果随着被除数从0开始一位一位增加,一位一位得到,虽然结果的每一位不一定有效
- 由于是倒着存,要先reverse然后才去前导零
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
vector<int> div(vector<int> &a, int b, int &r) {
vector<int> c;
r = 0;
for (int i = (int)a.size() - 1; i >= 0; -- i) {
r = r * 10 + a[i];
c.push_back(r / b);
r %= b;
}
reverse(c.begin(), c.end());
while (c.size() > 1 && c.back() == 0) c.pop_back();
return c;
}
int main() {
string a;
int b;
vector<int> A;
cin >> a >> b;
for (int i = (int)a.size() - 1; i >= 0; -- i) A.push_back(a[i] - '0');
vector<int> c;
int r;
c = div(A, b, r);
for (int i = (int)c.size() - 1; i >= 0; -- i) cout << c[i];
cout << endl << r;
}
高精度乘、除、比较大小
高精度乘法:
- 大数乘小数
- 大数用vector< int >倒置存放
- 从最后一位开始分别乘上小数
- 每一位,结果加上进位t,进位,然后剩余
- 枚举结束退出循环后,进位可能还有剩余,使用while!
vector<int> mul(vector<int>a, int b)
{
vector<int> c;
int t = 0;
for (int i = 0; i < a.size(); i ++ )
{
t += a[i] * b;
c.push_back(t % 10);
t /= 10;
}
while (t)
{
c.push_back(t % 10);
t /= 10;
}
return c;
}
高精度除法:
- 大数除小数
- 大数用vector< int >倒置存放
- 从第一位(因为从vector的back开始),用t表示当前剩下的数,因此,每次进入循环,t都乘上10再加上当前的这位
- 如果当前是得到结果的第一位,需要不是0;如果已经得到了结果的第一位,0也必须占一位;因此,用一个bool来记录是否已经得到了结果的第一位
- 注意最后我们得到的结果要倒置!!!因为习惯上,高精度时vector都是倒置
vector<int> div(vector<int>a, int b)
{
vector<int> c;
bool is_first = true;
for (int i = a.size() - 1, t = 0; i >= 0; i -- )
{
t = t * 10 + a[i];
int x = t / b;
if (!is_first || x)
{
is_first = false;
c.push_back(x);
}
t %= b;
}
reverse(c.begin(), c.end());
return c;
}
高精度比大小:
- 两个vector比较大小
- 首先比较长度
- 如果长度相同,倒置过来进行比较;可以直接使用大于符号来比较整个容器;但注意倒置!!
vector<int> max_vec(vector<int> a, vector<int> b)
{
if (a.size() > b.size()) return a;
if (a.size() < b.size()) return b;
if (vector<int>(a.rbegin(), a.rend()) > vector<int>(b.rbegin(), b.rend())) return a;
return b;
}
2594

被折叠的 条评论
为什么被折叠?



