PointCloud的TriangleMesh生成方法
本文使用csv
文件作为点云数据(csv —> DataFrame —> PointCloud)
0. 数据展示
数据可视化方法
import open3d as o3d
from pandas import DataFrame
def visualization_df(df: DataFrame, name: str, folder_name: str = None) -> None:
"""
可视化3D点云数据
:param df: 3D点云数据
:param name: 可视化图形名称
:param folder_name: 用于创建保存过程数据的文件夹
:return: None
"""
points = df[['X', 'Y', 'Z']].values
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points)
o3d.visualization.draw_geometries([pcd], window_name=name, width=1024, height=768)
1. Poisson表面重建
def surface_by_reconstruction(data: DataFrame, show=False):
"""
使用 Open3D 的 Poisson Surface Reconstruction 方法,将点云转为表面网格并填充缝隙
:param data:
:param show: 是否直接显示
:return:
"""
points = data[['X', 'Y', 'Z']].values
# 读取或生成点云
point_cloud = o3d.geometry.PointCloud()
point_cloud.points = o3d.utility.Vector3dVector(points) # 替换为实际点云数据
# 法向量估计(构建表面的前提)
point_cloud.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30))
# Poisson表面重建
mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(pcd=point_cloud, depth=9)
# 裁剪网格(移除多余的表面)
bbox = point_cloud.get_axis_aligned_bounding_box()
mesh = mesh.crop(bbox)
if show:
# 可视化结果
o3d.visualization.draw_geometries([mesh], window_name="Closed Surface")
return point_cloud, mesh
重建效果:
2. Alpha Shapes
def surface_by_alpha_shape(data: DataFrame, show=False):
"""
Alpha Shapes 是通过调整参数来生成紧密包裹点云的表面
:param data:
:param show: 是否直接显示
:return:
"""
points = data[['X', 'Y', 'Z']].values
# 读取或生成点云
point_cloud = o3d.geometry.PointCloud()
point_cloud.points = o3d.utility.Vector3dVector(points)
# 使用 Alpha Shapes 生成表面
alpha = 10 # 调整alpha值,影响封闭程度
mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_alpha_shape(point_cloud, alpha)
if show:
# 可视化结果
o3d.visualization.draw_geometries([mesh], window_name="Closed Surface")
return point_cloud, mesh
重建效果:
3. 检测边界
def surface_by_hull(data: DataFrame, show=False):
"""
如果点云的开放区域是平坦的,可以直接检测边界并填充多边形
:param data:
:param show: 是否直接显示
:return:
"""
points = data[['X', 'Y', 'Z']].values
# 读取或生成点云
point_cloud = o3d.geometry.PointCloud()
point_cloud.points = o3d.utility.Vector3dVector(points)
# 提取边界
hull, index_list = point_cloud.compute_convex_hull()
hull.orient_triangles() # 统一法向方向
if show:
# 可视化结果
# o3d.visualization.draw_geometries([point_cloud, hull], window_name="Closed Surface")
o3d.visualization.draw_geometries([hull], window_name="Closed Surface")
return point_cloud, hull, index_list
重建效果:
4. 小结
Poisson
表面重建和Alpha Shapes
方法需要对参数进行调整适配,单一使用该方法泛化性不强,如果点云的开放区域是平坦的,可以直接检测边界并填充多边形形成TriangleMesh
。