【Python-Open3D学习笔记】004Mesh生成方法

PointCloud的TriangleMesh生成方法

本文使用csv文件作为点云数据(csv —> DataFrame —> PointCloud)

0. 数据展示

数据可视化方法

import open3d as o3d
from pandas import DataFrame

def visualization_df(df: DataFrame, name: str, folder_name: str = None) -> None:
    """
    可视化3D点云数据
    :param df: 3D点云数据
    :param name: 可视化图形名称
    :param folder_name: 用于创建保存过程数据的文件夹
    :return: None
    """
    points = df[['X', 'Y', 'Z']].values
    pcd = o3d.geometry.PointCloud()
    pcd.points = o3d.utility.Vector3dVector(points)
    o3d.visualization.draw_geometries([pcd], window_name=name, width=1024, height=768)

在这里插入图片描述

1. Poisson表面重建


def surface_by_reconstruction(data: DataFrame, show=False):
    """
    使用 Open3D 的 Poisson Surface Reconstruction 方法,将点云转为表面网格并填充缝隙
    :param data:
    :param show: 是否直接显示
    :return:
    """
    points = data[['X', 'Y', 'Z']].values
    # 读取或生成点云
    point_cloud = o3d.geometry.PointCloud()
    point_cloud.points = o3d.utility.Vector3dVector(points)  # 替换为实际点云数据

    # 法向量估计(构建表面的前提)
    point_cloud.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30))

    # Poisson表面重建
    mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(pcd=point_cloud, depth=9)

    # 裁剪网格(移除多余的表面)
    bbox = point_cloud.get_axis_aligned_bounding_box()
    mesh = mesh.crop(bbox)

    if show:
        # 可视化结果
        o3d.visualization.draw_geometries([mesh], window_name="Closed Surface")
    return point_cloud, mesh

重建效果:
在这里插入图片描述
在这里插入图片描述

2. Alpha Shapes

def surface_by_alpha_shape(data: DataFrame, show=False):
    """
    Alpha Shapes 是通过调整参数来生成紧密包裹点云的表面
    :param data:
    :param show: 是否直接显示
    :return:
    """
    points = data[['X', 'Y', 'Z']].values
    # 读取或生成点云
    point_cloud = o3d.geometry.PointCloud()
    point_cloud.points = o3d.utility.Vector3dVector(points)

    # 使用 Alpha Shapes 生成表面
    alpha = 10  # 调整alpha值,影响封闭程度
    mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_alpha_shape(point_cloud, alpha)

    if show:
        # 可视化结果
        o3d.visualization.draw_geometries([mesh], window_name="Closed Surface")
    return point_cloud, mesh

重建效果:
在这里插入图片描述
在这里插入图片描述

3. 检测边界

def surface_by_hull(data: DataFrame, show=False):
    """
    如果点云的开放区域是平坦的,可以直接检测边界并填充多边形
    :param data:
    :param show: 是否直接显示
    :return:
    """
    points = data[['X', 'Y', 'Z']].values
    # 读取或生成点云
    point_cloud = o3d.geometry.PointCloud()
    point_cloud.points = o3d.utility.Vector3dVector(points)

    # 提取边界
    hull, index_list = point_cloud.compute_convex_hull()
    hull.orient_triangles()  # 统一法向方向

    if show:
        # 可视化结果
        # o3d.visualization.draw_geometries([point_cloud, hull], window_name="Closed Surface")
        o3d.visualization.draw_geometries([hull], window_name="Closed Surface")

    return point_cloud, hull, index_list

重建效果:

在这里插入图片描述
在这里插入图片描述

4. 小结

Poisson表面重建和Alpha Shapes方法需要对参数进行调整适配,单一使用该方法泛化性不强,如果点云的开放区域是平坦的,可以直接检测边界并填充多边形形成TriangleMesh

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值