求助各位大佬!(CNN-LSTM)

作者在使用TensorFlow2.0构建CNN与LSTM结合的图像分类模型时遇到困难,实验结果显示效果不佳。寻求提高准确率和优化网络结构的方法,包括尝试过双向LSTM和dropout调整。
摘要由CSDN通过智能技术生成

最近在做CNN与LSTM网络结合实现图像分类的问题,但是自己尝试了很多次,实验效果并不理想,不知道该如何改进,所以来求助各位大佬,希望大佬不吝赐教,我用的是TensorFlow2.0版本的框架,数据集是cifar10.

最初CNN模型:

训练结果(10轮,批次大小100):

CNN-LSTM模型:

图中LSTM层是双向LSTM,不过我最开始用的是普通LSTM层,由于实验结果与原初CNN模型效果差别不大,这才改为双向LSTM。

训练结果:

不知道各位大佬有什么法子将准确率提上去,或者优化一下网络结构。

卷积层中的dropout=0.3,全连接层以及LSTM的dropout=0.5,优化器为adam(默认),损失函数为'sparse_categorical_crossentropy'。

谢谢各位大佬了(*^▽^*)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值