最近在做CNN与LSTM网络结合实现图像分类的问题,但是自己尝试了很多次,实验效果并不理想,不知道该如何改进,所以来求助各位大佬,希望大佬不吝赐教,我用的是TensorFlow2.0版本的框架,数据集是cifar10.
最初CNN模型:
训练结果(10轮,批次大小100):
CNN-LSTM模型:
图中LSTM层是双向LSTM,不过我最开始用的是普通LSTM层,由于实验结果与原初CNN模型效果差别不大,这才改为双向LSTM。
训练结果:
不知道各位大佬有什么法子将准确率提上去,或者优化一下网络结构。
卷积层中的dropout=0.3,全连接层以及LSTM的dropout=0.5,优化器为adam(默认),损失函数为'sparse_categorical_crossentropy'。
谢谢各位大佬了(*^▽^*)