代码
#include <iostream>
using namespace std;
const int N = 1e6+10;
int n;
int primes[N],cnt;
bool vis[N];
//朴素筛法-O(nlogn)
void get_primes(int n)
{
for(int i = 2; i <= n; i++)
{
if(!vis[i]) primes[cnt++] = i;
for(int j = i+i; j <= n; j += i) vis[j] = true;
}
}
//埃式筛法-O(nloglogn)
void get_primes(int n)
{
for(int i = 2; i <= n; i++)
{
if(!vis[i])
{
primes[cnt++] = i;
for(int j = i; j <= n; j += i) vis[j] = true;
}
}
}
//线性筛法-O(n), n = 1e7的时候基本就比埃式筛法快一倍了
//算法核心:x仅会被其最小质因子筛去
void get_primes(int x)
{
for(int i = 2; i <= x; i++)
{
if(!vis[i]) primes[cnt++] = i;
for(int j = 0; primes[j] <= x / i; j++)
{
//对于任意一个合数x,假设pj为x最小质因子,当i<x/pj时,一定会被筛掉
vis[primes[j]*i] = true;
if(i % primes[j] == 0) break;
/*
1.i%pj == 0, pj定为i最小质因子,pj也定为pj*i最小质因子
2.i%pj != 0, pj定小于i的所有质因子,所以pj也为pj*i最小质因子
*/
}
}
}
int main()
{
cin >> n;
get_primes(n);
cout << cnt << endl;
return 0;
}
426

被折叠的 条评论
为什么被折叠?



