单特征分布可视化
# 首先查看都有什么特征
import pandas as pd
data = pd.read_csv('data.csv')
data.head()
输出结果,看下标签分别是什么,这个data.csv可以见评论区,这个我不知道怎么发文档。
# 找到所有的连续特征
# 方法一
continuous_features = []
for i in data.columns:
if data[i].dtype != 'object':
continuous_features.append(i)
continuous_features
# 方法二
# 实际上,实现上述操作,更简单的方法如下,借助select_dtypes方法。
continuous_features = data.select_dtypes(include=['float64', 'int64']).columns.tolist()
continuous_features
这里我们思考一下,既然实现一个路径有很多方法,到底什么方法是最好的呢?
如果你在执行复杂的项目,你需要考虑到内存管理、运行效率、算法负责度,甚至是代码美观性。
但是目前你的目标就是达到目的即可,所以你应该用最简单最直观的方法,这便于你读者一眼知道你在做什么。也不要过于记忆太多新的函数加大自己的学习成本。
所以这里我推荐第一种方法,但是你问ai 他会告诉你第二种,第二种能看懂即可
初识matplotlib库
作为一个朴素的人类,你觉得绘制一个图需要什么?
1. 需要指定图的类型,比如折线图,散点图,柱状图等
2. 需要指定图的坐标轴,比如x轴和y轴,并且传入数据
3. 需要指定图的标题,比如x轴和y轴的标签,以及标题
对的,所以我们的代码也这样写!
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
sns.boxplot(x=data['Annual Income'])
plt.title('Annual Income 的箱线图')
plt.xlabel('Annual Income')
plt.show()
此时你会发现
1. 下方有莫名其妙的警告
2. 中文字符显示不全
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
# 设置全局字体为支持中文的字体 (例如 SimHei)
plt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号'-'显示为方块的问题
plt.rcParams['axes.unicode_minus'] = False
sns.boxplot(x=data['Annual Income'])
plt.title('年收入 箱线图') # 使用中文标题
plt.xlabel('年收入') # 使用中文标签
plt.show()
另外,数值变量有的是连续变量 有的是离散变量
# 绘制直方图
sns.histplot(data['Years in current job'])
plt.title('在当前工作年限 直方图')
plt.xlabel('在当前工作年限')
plt.ylabel('员工数量')
plt.show()
# 还有很多新的参数可以调整图像 但是不需要记忆 用的时候问下ai即可
sns.histplot(x=data['Years in current job'])
plt.title('在当前工作年限 直方图')
plt.xlabel('在当前工作年限')
plt.ylabel('员工数量')
plt.xticks(rotation=45, ha='right') # 旋转45度,并右对齐
plt.tight_layout() # 自动调整子图参数,提供足够的空间
plt.show()
绘制特征和标签的关系
标签是离散的,特征如果是连续的应该绘制什么图?
可以分别考虑违约和不违约情况下的连续特征,画2个箱线图
# 另一种可视化方式:箱线图
plt.figure(figsize=(8, 6))
sns.boxplot(x='Credit Default', y='Annual Income', data=data)
plt.title('Annual Income vs. Credit Default')
plt.xlabel('Credit Default')
plt.ylabel('Annual Income')
plt.show()
# 另一种可视化方式:小提琴图
# 相较于箱线图,小提琴图更加美观
plt.figure(figsize=(8, 6))
sns.violinplot(x='Credit Default', y='Annual Income', data=data)
plt.title('Annual Income vs. Credit Default')
plt.xlabel('Credit Default')
plt.ylabel('Annual Income')
plt.show()
但是实际上连续变量也可以绘制类似于直方图的图像,可以用核密度估计来完成边缘的柔和化
# 绘制 Annual Income 和 Credit Default 的关系图
plt.figure(figsize=(8, 6))
sns.histplot(x='Annual Income', hue='Credit Default', data=data, kde=True, element="step")
plt.title('Annual Income vs. Credit Default')
plt.xlabel('Annual Income')
plt.ylabel('Count')
plt.show()
绘制离散变量和标签的关系
# 绘制 Number of Open Accounts 和 Credit Default 的关系图
plt.figure(figsize=(8, 6))
sns.countplot(x='Number of Open Accounts', hue='Credit Default', data=data)
plt.title('Number of Open Accounts vs. Credit Default')
plt.xlabel('Number of Open Accounts')
plt.ylabel('Count')
plt.show()
可以看到 如果number of open accounts的值太多 就会很散,不美观,所以这时候采取分组的措施
# 将 "Number of Open Accounts" 分组
data['Open Accounts Group'] = pd.cut(data['Number of Open Accounts'], bins=[0, 5, 10, 15, 20, float('inf')], labels=['0-5', '6-10', '11-15', '16-20', '20+']) # 根据你的数据调整分组
plt.figure(figsize=(10, 6))
sns.countplot(x='Open Accounts Group', hue='Credit Default', data=data)
plt.title('Number of Open Accounts (Grouped) vs. Credit Default')
plt.xlabel('Number of Open Accounts Group')
plt.ylabel('Count')
plt.show()
现在可以开始尝试对与其他的连续变量 离散变量都分别绘制
观察一下数据的特点,很多时候我们需要单纯从数据分布来认识数据,这才是真正有价值的事情。
希望能坚持下去~,今天的例子稍微多了一点,看到这里你也是很棒的~