高斯消元法、LU分解法与克莱姆法则解方程组的C++实现

数值分析老师布置了这样的实习作业:

随机生成一个 𝑛 𝑛 n 阶方阵与 𝑛 𝑛 n 阶向量构成 𝐴 𝑥 = 𝑏 𝐴𝑥 = 𝑏 Ax=b

  • 至少生成 5 5 5 个方程并取不同的 𝑛 𝑛 n
  • 编程实现克莱姆法则求 𝑥 𝑥 x
  • 编程实现高斯消去法基本方法求 𝑥 𝑥 x
  • 编程实现高斯消去法的 L U LU LU 分解求 𝑥 𝑥 x
  • 编程实现列主元高斯消去法求 𝑥 𝑥 x
  • 列表比较并分析以上方法的运算时间与效率

看到这个作业后,我内心其实是拒绝的。要是用 C++ 的话,估计得写好久。

但作业也不能不交是吧,于是就写了下面的代码。

#include<bits/stdc++.h>
using namespace std;
const int N=110;
const double eps=1e-6;
int n,flag,bg,ed;
double d[N],a[N][N],acp[N][N],l[N][N],u[N][N];

void randinit(){ for(int i=1;i<=n;i++) for(int j=1;j<=n+1;j++) acp[i][j]=(rand()%200)/10.0-10; }
void init(){ for(int i=1;i<=n;i++) for(int j=1;j<=n+1;j++) a[i][j]=acp[i][j]; }
void out(){ printf("x = [ "); for(int i=1;i<=n;i++) printf("%lf ",a[i][n+1]); printf("]\n"); }
void pt(double a[N][N]){ for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) printf("%lf%c",a[i][j]," \n"[j==n]); }

void calc_U(){	//求解上三角方程组
	for(int i=n;i>=1;i--){
		for(int j=n;j>i;j--) a[i][n+1]-=a[i][j]*a[j][n+1];
		a[i][n+1]/=a[i][i];
	}
}

void calc_D(){	//求解下三角方程组
	for(int i=1;i<=n;i++){
		for(int j=1;j<i;j++) a[i][n+1]-=a[i][j]*a[j][n+1];
		a[i][n+1]/=a[i][i];
	}
}

void divide(){	//将A分解为L和U;
	for(int i=1;i<=n;i++){
		if(abs(a[i][i])<eps) return (void)(flag=true);
		for(int k=i+1;k<=n;k++){
			l[k][i]=a[k][i]/a[i][i];
			if(abs(a[k][i])>eps) for(int j=n+1;j>=i;j--)
				a[k][j]-=a[i][j]*(a[k][i]/a[i][i]);
		}
	}
	for(int i=1;i<=n;i++) for(int j=i;j<=n;j++) l[i][j]=i==j;
	for(int i=1;i<=n;i++) for(int j=i;j<=n;j++) u[i][j]=a[i][j];
}

void gauss_base(){	//高斯消去法(基本)
	divide();		//化解为上三角
	calc_U();	//回代
}

void gauss(){	//高斯消去法(列主元、无回代)
	for(int i=1;i<=n;i++){
		int mx=i;
		for(int j=i+1;j<=n;j++) if(a[j][i]>a[mx][i]) mx=j;
		if(abs(a[mx][i])<eps) return (void)(flag=true);
		for(int j=i;j<=n+1;j++) swap(a[i][j],a[mx][j]);
		for(int j=n+1;j>=i;j--) a[i][j]/=a[i][i];
		for(int k=1;k<=n;k++) if(i!=k)
			for(int j=n+1;j>=i;j--) a[k][j]-=a[k][i]*a[i][j];
	}
}

double det(){	//计算det
	double ret=1;
	for(int i=1;i<=n;i++){
		int mx=i;
		for(int j=i+1;j<=n;j++) if(a[j][i]>a[mx][i]) mx=j;
		if(abs(a[mx][i])<eps){ flag=true; return 0; }
		if(mx!=i) ret=-ret;
		ret*=a[mx][i];
		for(int j=i;j<=n+1;j++) swap(a[i][j],a[mx][j]);
		for(int j=n+1;j>=i;j--) a[i][j]/=a[i][i];
		for(int k=1;k<=n;k++) if(i!=k)
			for(int j=n+1;j>=i;j--) a[k][j]-=a[k][i]*a[i][j];
	}
	return ret;
}

void cramer(){	//克莱姆法则求解
	for(int i=0;i<=n;i++){
		init();
		if(i!=0) for(int j=1;j<=n;j++) swap(a[j][i],a[j][n+1]);
		d[i]=det();
	}
	for(int i=1;i<=n;i++) a[i][n+1]=d[i]/d[0];
}


void LU(){	//LU分解法
	divide();
	for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) a[i][j]=l[i][j];
	for(int i=1;i<=n;i++) a[i][n+1]=acp[i][n+1];
	calc_D();
	for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) a[i][j]=u[i][j];
	calc_U();
}


int main(){
	srand(time(0));
	printf("input n (2<=100) :\n");
	scanf("%d",&n);
	do{
		flag=false;
		randinit();
		init();
		divide();
	}while(flag);	//生成有唯一解的方程组
	init();
	bg=clock(); gauss_base();	ed=clock();
	printf("gauss_base ans is : \n"); out();
	printf("gauss_base run time is %d ms\n\n",ed-bg);

	init();
	bg=clock(); gauss();	ed=clock();
	printf("gauss ans is : \n"); out();
	printf("gauss run time is %d ms\n\n",ed-bg);

	init();
	bg=clock(); LU();	ed=clock();
	if(n<=10){
		printf("L is :\n"); pt(l);
		printf("u is :\n"); pt(u);
	}
	printf("LU ans is : \n"); out();
	printf("LU run time is %d ms\n\n",ed-bg);

	bg=clock(); cramer();	ed=clock();
	printf("cramer ans is : \n"); out();
	printf("cramer run time is %d ms\n\n",ed-bg);
}

n n n 100 100 100 时,四种方法的运行时间如下表:

基本Gauss列主元GaussLU分解法克莱姆法则
3ms4ms3ms632ms

克莱姆法则的复杂度为 O ( n 4 ) O(n^4) O(n4),明显慢于其他 O ( n 3 ) O(n^3) O(n3) 的算法。

刚开始很不理解, L U LU LU 分解法的动作明显比高斯消元更冗余。然后搜了搜它们的优缺点,如下:

L U LU LU G a u s s Gauss Gauss 都是 O ( n 3 ) O(n^3) O(n3) 。更精确地讲,乘除法大概都是 n 3 3 \frac{n^3}{3} 3n3 次,时间上差别不大,不过:
L U LU LU 具有承袭性,这是 L U LU LU 的优点。
L U LU LU 只适用于解所有顺序主子式都大于 0 0 0 的,通用性欠缺,这是 L U LU LU 的缺点。
L U LU LU 法不保证具有数值稳定性,这是 L U LU LU 的缺点。( G a u s s Gauss Gauss 法可以用选取列主元技巧保证数值稳定性)
集合 L U LU LU G a u s s Gauss Gauss 优点,同时规避掉这些缺点的,是 L U P LUP LUP 分解法。

参考链接 LU分解法与Gauss消元法两者的比较

所谓承袭性,就是说当计算 A x = y i Ax=y_i Ax=yi ( 1 ≤ i ≤ n 1 \le i \le n 1in) 时,若使用 G a u s s Gauss Gauss ,那么只能依次调用 n n n 次,总复杂度为 O ( k × n 3 ) O(k \times n^3) O(k×n3)。而使用 L U LU LU 分解法时,先用 O ( n 3 ) O(n^3) O(n3) 的复杂度将原式转化为 L U x = y i LUx=y_i LUx=yi ,之后进行 k k k 次回代就能求出所有的 x i x_i xi ,总复杂度为 O ( n 3 + k × n 2 ) O(n^3+k \times n^2) O(n3+k×n2)

另外,在调试代码的时候,我最初将数组开的很大,试了试 200 × 200 200 \times 200 200×200 的矩阵,结果其他方法都能正确求解,唯独克莱姆法则输出全为 n a n nan nan 。而对于 100 × 100 100 \times 100 100×100 的矩阵,四种方法都能正确求解。
后来发现,使用克莱姆法则,需要求解行列式的值。而我随机生成的矩阵,这个行列式的值会随着矩阵的规模增大而急剧增大,溢出 d o u b l e double doubleC++党已经输麻了

  • 4
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
矩阵求逆LU分解是一种求矩阵逆的算,通过将矩阵分解为下三角矩阵L和上三角矩阵U的积,然后利用这两个矩阵求矩阵的逆。 首先,我们需要将矩阵A进行LU分解,得到下三角矩阵L和上三角矩阵U。具体步骤如下: 1. 初始化L为单位下三角矩阵,即L的对角线元素全为1,U为矩阵A的副本。 2. 对于矩阵U的每一列,我们将其第一行元素记为U[1, j],然后计算L的第一列元素L[i, 1](i = 2, 3, ..., n)以及矩阵U的第i行元素U[i, j](i = 2, 3, ..., n): - L[i, 1] = U[i, 1] / U[1, 1] - U[i, j] = U[i, j] - L[i, 1] * U[1, j] 3. 对于矩阵U的第二列至第n列,我们依次计算L的第一行至第n-1行元素以及矩阵U的第i行元素(i = 2, 3, ..., n): - L[i, k] = (U[i, k] - sum(L[i, j] * U[j, k] for j in range(1, k))) / U[k, k] - U[i, j] = U[i, j] - sum(L[i, k] * U[k, j] for k in range(1, j)) 得到矩阵L和矩阵U后,我们可以按照以下步骤计算矩阵的逆: 1. 初始化矩阵I为单位矩阵。 2. 对于每一列的矩阵I的列向量b,利用L和U出方程Ax = b,即x = U^(-1)L^(-1)b。 3. 将得到的每一列向量x按列组合起来得到矩阵的逆。 需要注意的是,在实际计算中,如果遇到U的对角线元素接近或者等于0的情况,则矩阵不存在逆,因此需要避免这种情况的发生。同时,如果矩阵A是一个稀疏矩阵,那么LU分解可能不是最优的求,可以考虑使用其他方矩阵逆。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

m0_51864047

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值