【c/c++编程】数学类问题:同余模、最大公约数、最小公倍数、素数判定

目录

同模余定理

题1-求S(n)

最大公约数(GCD)

题2-最简真分数

最小公倍数(LCM) 

题3-求最小公倍数

斐波那契数

素数

题4-判断素数

题5-判定素数

题6-素数判定

题7-素数


同模余定理

定义所谓的同余,顾名思义,就是许多的数被一个数 d 去除,有相同的余数。d 数学上的称谓为模。

如 a = 6, b = 1, d = 5, 则我们说 a 和 b 是模 d 同余的。因为他们都有相同的余数 1 。

数学上的记法为: a≡ b(mod d) 可以看出当 n < d 的时候,所有的 n 都对 d 同商,比如时钟上的小时数,都小于 12, 所以小时数都是模 12 的同余.对于同余有三种说法都是等价的,分别为:

(1) a 和 b 是模 d 同余的.

(2) 存在某个整数 n ,使得 a = b + nd .

(3) d 整除 a - b .

可以通过换算得出上面三个说话都是正确而且是等价的,同余公式也有许多我们常见的定律,比如相等律,结合律,交换律,传递律….如下面的 表示:

1) a≡a(mod d)

2) a≡b(mod d)→b≡a(mod d)

3) (a≡b(mod d),b≡c(mod d))→a≡c(mod d) 如果 a≡x(mod d),b≡m(mod d),则

4) a+b≡x+m (mod d)

5) a-b≡x-m(mod d)

6) a*b≡x*m(mod d )

应用

(a+b)%c=(a%c+b%c)%c;

(a-b)%c=(a%c-b%c)%c;

(a*b)%c=(a%c*b%c)%c

同余模定理的运算不适用于除法

题1-求S(n)

题目描述

S(n)=n^5
求S(n)除以3的余数

输入描述:

每行输入一个整数n,(0 < n < 1000000) 
处理到文件结束

输出描述:

输出S(n)%3的结果并换行

输入样例#:

1
2

输出样例#:

1
2
  • n 虽然不大,但是 n^5 却超过 long long 的范围,所幸的 是题目只要我们对答案%3,这时候我们就可以运用同余模定理。 S(n)%3=(n^5)%3=(n*n*n*n*n)%3=((n%3)*(n%3)*(n%3)*(n%3)*(n%3))%3
#include<stdio.h>
#include <bits/stdc++.h>//万能头文件
using namespace std;
int n;
int main(){

		//(n*n)%3==((n%3)*(n%3))%3
		while(scanf("%d",&n)!=EOF){
			int res = n%3;
			for(int i = 1;i<5;i++){//for循环中再* n%3四次 
				res = res*n%3;
			}
			cout<<res%3<<endl;
		}
		return 0;
	} 

最大公约数(GCD)

辗转相除法

  1. 辗转相除法是求两个自然数的最大公约数的一种方法,也叫欧几里德算法。

  2. 用较大数除以较小数,再用出现的余数去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。最后为0,则除数为最大公约数。

  3. 依然是求18和30 的最大公约数,方法如图所示。

#include<stdio.h>
#include <bits/stdc++.h>//万能头文件
using namespace std;

int gcd(int a,i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值