【ACM数论】线性同余方程

线性同余方程

1、问题引入

现在来说一个exgcd的应用:求解同余方程

问题:
求同余方程 3 x ≡ 1 ( m o d   10 ) 的一个解 求同余方程3x≡1 (mod\ 10)的一个解 求同余方程3x1(mod 10)的一个解
解:可将该同余方程改写成其等价形式,如下:

3 x + 10 y = 1 3x+10y=1 3x+10y=1
这个问题的本质是什么?

就是
求形如 a x + b y = c 方程的一个特解 求形如ax+by=c方程的一个特解 求形如ax+by=c方程的一个特解
那么对于这种形式的方程如何进行求解喃?
法一:暴力从-99999到9999999一个一个的试?

显然这种本办法是不行的,这个时候就要考虑exgcd

下面来看操作:
已知 e x g c d 的标准形式 a x + b y = g c d ( a , b ), 那么可以将形如 a x + b y = c 构造成标准形式: a ∗ ( x ∗ g c d ( a , b ) c ) + b ∗ ( y ∗ g c d ( a , b ) c ) = g c d ( a , b ) 令 X = x ∗ g c d ( a , b ) c , Y = y ∗ g c d ( a , b ) c , 则方程变为: a X + b Y = g c d ( a , b ) 又 ∵ g c d ( a , b ) , c 都为已知数 ∴ 可以通过 e x g c d 求出 X 后,通过反解得到 x ( 如何求解可参考我的上一篇博客 ) 注:由于是整数解,需要考虑是否能 g c d 是否整除 c 已知exgcd的标准形式ax+by=gcd(a,b),\\那么可以将形如ax+by=c构造成标准形式:\\ a*(\frac{x*gcd(a,b)}{c})+b*(\frac{y*gcd(a,b)}{c})=gcd(a,b)\\ 令X=\frac{x*gcd(a,b)}{c},Y=\frac{y*gcd(a,b)}{c},则方程变为:aX+bY=gcd(a,b)\\ 又∵gcd(a,b),c都为已知数\\ ∴可以通过exgcd求出X后,通过反解得到x(如何求解可参考我的上一篇博客)\\ 注:由于是整数解,需要考虑是否能gcd是否整除c\\ 已知exgcd的标准形式ax+by=gcdab),那么可以将形如ax+by=c构造成标准形式:a(cxgcd(a,b))+b(cygcd(a,b))=gcdabX=cxgcd(a,b)Y=cygcd(a,b),则方程变为:aX+bY=gcd(a,b)gcd(a,b),c都为已知数可以通过exgcd求出X后,通过反解得到x(如何求解可参考我的上一篇博客)注:由于是整数解,需要考虑是否能gcd是否整除c

2、通解求法

问题继续深入下去!!!!

如何
求关于同余方程 a x + b y = c 的一组通解 求关于同余方程ax+by=c的一组通解 求关于同余方程ax+by=c的一组通解

解:根据前一个问题,我们已经得到了一组特解 x 0 , y 0 现在的问题转化为了根据特解求通解 设 x i , y i 与 x j , y j 为方程的两组解 则有: { a x i + b x i = c ① a x j + b y j = c ② 联立①②可得 a ( x i − x j ) = b ( y j − y i ) 两边同时除以 g c d ( a , b )那么得到 A ( x i − x j ) = B ( y j − y i ) 此时 g c d ( A , B ) = 1 那么通过移项可以发现 x i − x j = B ∗ ( y j − y i ) A 由于等号两边都为整数 故 y j − y i = k ∗ A ,同理 x i − x j = k ∗ B = k ∗ b g c d ( a , b ) (说明 x i 与 x j 之间的差一定为 b g c d ( a , b ) 的倍数) 所以通解为: { x = x 0 + k ∗ b g c d ( a , b ) y = y 0 − k ∗ a g c d ( a , b ) 有了通解便可以推出 x 和 y 的最小正整数解 解:根据前一个问题,我们已经得到了一组特解x_0,y_0\\ 现在的问题转化为了根据特解求通解\\ 设x_i,y_i与x_j,y_j为方程的两组解\\ 则有: \begin{cases} ax_i+bx_i=c ①\\ ax_j+by_j=c ②\\ \end{cases} \\ 联立①②可得a(x_i-x_j)=b(y_j-y_i)\\ 两边同时除以gcd(a,b)那么得到A(x_i-x_j)=B(y_j-y_i)\\ 此时gcd(A,B)=1\\ 那么通过移项可以发现x_i-x_j=\frac{B*(y_j-y_i)}{A}\\ 由于等号两边都为整数\\ 故y_j-y_i=k*A,同理x_i-x_j=k*B=k*\frac{b}{gcd(a,b)} \\ (说明x_i与x_j之间的差一定为\frac{b}{gcd(a,b)}的倍数)\\ 所以通解为: \begin{cases} x=x_0+k*\frac{b}{gcd(a,b)}\\ y=y_0-k*\frac{a}{gcd(a,b)}\\ \end{cases}\\ 有了通解便可以推出x和y的最小正整数解\\ 解:根据前一个问题,我们已经得到了一组特解x0,y0现在的问题转化为了根据特解求通解xi,yixj,yj为方程的两组解则有:{axi+bxi=caxj+byj=c联立①②可得axixj=byjyi两边同时除以gcdab)那么得到Axixj=Byjyi此时gcdAB=1那么通过移项可以发现xixj=AB(yjyi)由于等号两边都为整数yjyi=kA,同理xixj=kB=kgcd(a,b)b(说明xixj之间的差一定为gcd(a,b)b的倍数)所以通解为:{x=x0+kgcd(a,b)by=y0kgcd(a,b)a有了通解便可以推出xy的最小正整数解

3、例题:

题目来自(POJ-1061):

题干:

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

标程:

#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
#define int long long
int ex_gcd(int a, int b, int &x, int &y)
{
    if (!b)
    {
        x = 1;
        y = 0;
        return a;
    }
    int gcd = ex_gcd(b, a % b, y, x);
    y -= a / b * x;
    return gcd;
}
signed main()
{
    int x, y, m, n, l;
    cin >> x >> y >> m >> n >> l;
    int a = -(m - n), b = l;
    int X0, Y0;
    int gcd = ex_gcd(a, b, X0, Y0);
    if ((x - y) % gcd)
        cout << "Impossible" << endl;
    else
    {
        X0 = X0 * (x - y) / gcd;
        int s = abs(b / gcd);
        cout << (X0 % s + s) % s << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值