没有更新完之前,专栏价格为59,更新完毕之后恢复到99. 专栏内包含2024年所有数学建模比赛思路和代码,有些重要比赛着重更新(华数杯、国赛、美赛),小比赛可能会有chatgpt4更新,只需订阅一次。有些文章没有完整代码,请到专栏内查找最新代码和思路。如果比赛结束后没有更新代码(可能会有事情来不及更新)赛后我会统一退款。
2024年第五届“华数杯”专栏地址:https://blog.csdn.net/m0_52343631/category_12482955.html?spm=1001.2014.3001.5482
目录
2024年第五届“华数杯”专栏地址:https://blog.csdn.net/m0_52343631/category_12482955.html?spm=1001.2014.3001.5482
2022年优秀论文
摘要
可在水下移动、具有视觉和感知系统的自来水管道清理机器人(Water pipe
cleaning robot,简称 WPCR)能通过遥控或自主操作方式、使用机械臂代替或辅助人去
完成自来水管道垃圾清理任务。这种装置能及时清理管道,既可提高自来水的品质,也
能够保证水流畅通。该产品正受到水务公司和家庭住户的青睐,因此,对该装置的生产
规划问题应运而生。该问题是一个多级生产与库存管理的问题,需要合理安排每日生产
计划并使库存得到规划才能让此问题得到很好的解决。
问题 1:
首先根据题目信息可知在给定期限一周内开始阶段无任何存货,且期限结
束后也不遗留任何组件库存,那么每日生产计划需得到合理安排刚好用完。当日采购的
零件马上就可以用于组装,组装出来的部件也可以马上用于当日组装成品装置 WPCR。我
们据此建立了目标函数即为每日需要生产的产品生产准备费用与每日剩余库存费用之
和,赋予生产部件数量、是否生产组件、组件库存数量等为决策变量,构建物流平衡方
程:每个时段前一时段库存加当前时段生产量,减去该项目当前时段的需求量和用于组
装其他项目的量等于当前时段库存。决策目标为总成本,给定约束条件,建立优化模型
求解,得出最小成本为 6260.9 元
问题 2:
问题 2 提供了新的条件,即当日需要生产的项目的部件需要提前一天采购
或组装。周一开始时的存货为周日库存,周日结束时同样需要给下周一的生产提供库存
准备。据题我们可将目标生产计划理解为一个周期闭环,周一和周日变得连续,我们在
问题 1的基础上添加了新的约束:每天组装所消耗的配件数量不大于前一天的库存数量,
新增约束后,物流平衡方程无需改变,便可求出最优解,得出的最小成本为 177212.5元。
问题 3:
问题 3 在问题 2 的基础上添加的新的条件,即 210 天内需要进行 7 天的维
修,在维修当天工厂无法进行任何组件的生产,同时任意两次维修的日期必须要间隔 6
天以上,在每次维修过后的 5 天,工厂的生产工时会有一定的增加,在将这些约束加入
问题 2 的优化模型的同时加入一个新的决策变量来表示是否需要维修即可建立起基于
问题 3 的混合整数线性规划,利用 Matlab 对于此模型求解,可得到最优解,求解后可
知最小成本为 5317581 元。
问题 4:
题目给出了前 30 周的历史周订单数据,我们可以根据前 30 周的数据,设
其需求近似的服从正态分布,以此为样本空间,进行区间估计,求出一周中各天在置信
水平为 0.95,显著性水平为 1-0.95=0.05 的单侧置信上限,表示一周内该天 WPCR 需求
落在此区间的概率为 95%。对每周总体 WPCR 需求作为样本空间,进行区间估计,求
出每周需求的置信水平为 0.85,显著性水平为 1-0.85=0.15 的单侧置信上限,表示每周
的 WPCR 需求小于此上限的概率为 85%,据此制定了新的周生产计划,该计划下最小
成本为
177942.5 元。
关键词:
0-1 规划、混合线性整数规划、区间估计、正态分布
一、问题重述
自来水管道清理机器人(Water pipe cleaning robot,简称 WPCR)是一种可在水
下移 动、具有视觉和感知系统、通过遥控或自主操作方式、使用机械臂代替或辅助人去
完成 自来水管道垃圾清理任务的装置。运用这种装置能够及时清理管道,既可提高自
来水的 品质,也能够保证水流畅通,因而越来越受到水务公司和家庭住户的青睐。
某工厂生产的 WPCR 装置需要用 3 个容器艇(用 A 表示)、4 个机器臂(用 B 表示)、
5 个动力系统(用 C 表示)组装而成。每个容器艇(A)由 6 个控制