1. 引言
交通流量的实时检测与分析在城市交通管理、智能驾驶以及车辆调度中发挥着重要作用。车辆类型识别是识别任务的一部分,它能够识别路上的各种车辆类型,如轿车、货车、公交车等,有助于提高交通流管理的准确性。在部署方面,考虑到实时检测的需求,选择轻量级、快速的检测模型尤为重要。NanoDet作为一个小型、高效的目标检测模型,非常适合部署在嵌入式设备上。
本文将全面介绍基于NanoDet的车辆类型识别系统的开发过程。本文内容包括数据准备、模型训练、UI界面设计、嵌入式设备上的部署、实时检测效果展示及优化策略,适合想要实现车流量实时检测的开发者和研究人员参考。
目录
2. 数据准备
车辆识别的首要步骤是数据准备。高质量的数据集能极大地提升识别的准确性和鲁棒性。在此,我们选择了包含不同类型车辆的公开数据集,并对其进行清洗、标注格式转换及增强处理。
2.1 数据集选择
用于车辆类型识别的数据集要求涵盖广泛的车辆类别和各种不同的拍摄环境。下列几个公开数据集在实际应用中广受使用:
-
COCO Dataset:COCO数据集包含常见目标检测所需的标

订阅专栏 解锁全文
465

被折叠的 条评论
为什么被折叠?



