1. 引言
血细胞检测与计数是医学影像分析中的一个关键问题,广泛应用于血液疾病的诊断、监测和研究。传统的血细胞计数方法依赖于人工观察和显微镜检查,既费时又易于受到人为因素的影响。随着计算机视觉和深度学习技术的发展,基于图像的自动血细胞检测与计数逐渐成为可能,并取得了显著进展。
YOLO(You Only Look Once)是近年来非常流行的目标检测算法,因其高效且准确的特点,在医学图像分析中得到了广泛的应用。YOLOv8是YOLO系列中的最新版本,具有更高的精度和实时处理能力,适合用于血细胞检测与计数任务。
本文将详细介绍如何基于YOLOv8模型搭建一个血细胞检测与计数系统,使用Python编程语言和PySide6图形用户界面(GUI)库,结合开源血细胞数据集进行训练和测试。
2. 项目目标
本项目的目标是实现一个基于YOLOv8的血细胞检测与计数系统,具体实现以下功能:
- 血细胞检测:识别血液显微镜图像中的红细胞、白细胞和血小板等。
- 血细胞计数:对图像中的每种血细胞进行计数。
- PySide6界面:为用户提供图形化界面,方便加载和处理图像数据。
3. 环境准备
在开始开发之前,我们需要准备好以下环境和工具:
- Python 3.7+ :确保已安装Python环境,推荐使用Anaconda来管理环境。<
订阅专栏 解锁全文
371

被折叠的 条评论
为什么被折叠?



