引言
随着医学影像学的飞速发展,自动化医学影像分析成为了现代医学诊断的关键技术之一。在血液学研究中,血细胞的自动计数和分类是一个非常重要的任务。传统的人工血细胞计数方式不仅耗时且容易出错,因此基于计算机视觉的血细胞检测和分类已经成为了医学图像处理领域的研究热点。
BCCD(Blood Cell Count Dataset)血细胞计数数据集是一个常用于血细胞分类的开源数据集,包含了不同种类的血细胞图像,包括红细胞和白细胞两大类别。通过该数据集,研究人员可以训练深度学习模型来自动检测血细胞并进行分类。YOLOv10(You Only Look Once)作为当前最先进的目标检测算法之一,凭借其高效的检测能力和精确度,成为了应用于医学影像检测的理想选择。
本文将介绍如何利用YOLOv10模型对BCCD数据集进行目标检测,并搭建一个简单的Web UI界面,供用户进行血细胞图像的上传和实时检测。整个过程将涵盖数据集准备、模型训练、目标检测推理以及UI界面构建等步骤,并附带完整的代码实现。
1. BCCD数据集简介
BCCD(Blood Cell Count Dataset)是一个图像数据集,专门用于血细胞计数和分类任务。该数据集包括了两类血细胞:红细胞(Red Blood Cells, RBCs)和白细胞(White