1. 项目概述
犬种识别是计算机视觉领域的一个重要应用方向,可以广泛应用于宠物管理、动物保护、智能监控等领域。本文将详细介绍一个基于YOLOv11深度学习模型的犬种识别系统,包含完整的模型训练流程、UI界面开发以及实际应用部署。
本系统主要特点:
- 使用改进的YOLOv11模型进行目标检测和分类
- 包含完整的PyQt5用户界面
- 支持实时摄像头识别和图片识别
- 提供模型训练和评估代码
- 使用公开的Stanford Dogs数据集
2. 环境配置
在开始项目前,需要配置以下开发环境:
python
# 基础环境
Python 3.8+
CUDA 11.3 (如有GPU)
cuDNN 8.2.1
# 主要依赖库
torch==1.12.1+cu113
torchvision==0.13.1+cu113
opencv-python==4.6.0.66
numpy==1.23.3
PyQt5==5.15.7
pyqt5-tools==5.15.4.3.2
matplotlib==3.5.3
seaborn==0.11.2
tqdm==4.64.1
pandas==1.4.4
可以使用以下命令安装依赖:
bash
pip install -r requirements.txt
3. 数据集准备
我们使用S
订阅专栏 解锁全文
354





