1. 引言
1.1 研究背景与意义
随着人工智能技术的飞速发展,计算机视觉在各个领域得到了广泛应用。犬种识别作为图像识别的一个重要分支,不仅在宠物医疗、宠物保险、动物保护等方面具有实用价值,也是检验计算机视觉算法性能的典型任务。
传统的犬种识别方法主要依赖于手工特征提取和机器学习分类器,但这些方法在面对复杂背景、不同光照条件和犬类姿态变化时,识别准确率往往不尽如人意。深度学习技术的出现,特别是卷积神经网络(CNN)和物体检测算法如YOLO系列的发展,为犬种识别提供了新的解决方案。
本文假设的YOLOv11是基于最新研究趋势的设想版本,可能包含更先进的注意力机制、更高效的网络结构和更强大的特征提取能力。
2. 系统设计与架构
2.1 系统整体架构
本犬种识别系统采用模块化设计,主要包括以下组件:
-
数据预处理模块:负责图像增强、标注格式转换等
-
模型训练模块:基于YOLOv11架构进行犬种检测模型训练
-
模型推理模块:加载训练好的模型进行预测
-
用户界面模块:提供友好的Web界面供用户使用
-
结果后处理模块:对预测结果进行过滤、排序和可视化
订阅专栏 解锁全文
972

被折叠的 条评论
为什么被折叠?



