摘要: 植物病害是制约农业生产、威胁全球粮食安全的重要因素之一。传统病害识别依赖农艺师的经验,效率低下且难以规模化。近年来,基于深度学习的计算机视觉技术,特别是以YOLO系列为代表的目标检测模型,为植物病害的快速、精准、自动化识别提供了革命性的解决方案。本文将深入探讨如何利用YOLOv8这一最新算法,构建一个完整的植物叶片病害识别系统。内容涵盖核心算法原理、数据集准备与处理、模型训练技巧、性能评估对比(包括YOLOv5, v6, v7, v8),以及如何集成一个用户友好的Web UI界面。我们还将提供完整的、可执行的代码,并详细介绍一个公开可用的标准数据集——PlantVillage,助力读者复现并深化研究。
关键词: 深度学习;YOLOv8;目标检测;植物病害识别;PyTorch;Gradio;PlantVillage;智能农业
一、引言:背景与意义
全球人口的持续增长对粮食产量提出了更高的要求。然而,作物病害每年导致全球农作物产量损失高达20%-40%,对经济和社会稳定构成严重威胁。早期发现和准确诊断是有效控制病害蔓延、减少农药滥用、实现精准农业的关键。
传统的病害诊断方法主要依赖于植保专家通过肉眼观察叶片病斑的形状、颜色、纹理等特征进行判断。这种方法存在几个显著弊端:
-
主观性强:诊断结果严重依赖个人经验,不同专家可能得出不同结论。
-
效率低下:大规模农田的普查工作需要耗费大量人力物力。
-
时效
订阅专栏 解锁全文
424

被折叠的 条评论
为什么被折叠?



