4.0、5.0、如何创建一个springboot项目【超详细】

4.0、官方提供了一个快速生成的网站!IDEA集成了这个网站!

4.0以学习为目的,如果迫切的想要创建springboot项目可以跳过4.0,往下滑直到5.0

这里4.0我们先来学习一种在springboot官网上创建项目的方式

第一步:打开springboot官网:Spring Boot

 

第二步:springboot项目创建,添加相关依赖

 

第三步:将下载好的压缩包解压,然后用Idea打开 import project该项目即可项目结构如下

然后我写了一个controller测试运行成功

 

 

5.0、用IDEA创建一个springboot项目,以及一些有趣的用法

我们开发项目一般会直接使用IDEA创建一个springboot项目

第一步:点击create new project创建一个新项目

 

第二步:选择Spring Initializr

 

第三步:选好自己java的版本号

 

第四步:选择web添加Spring Web依赖

 

第五步:点击Finish项目创建完成

 

关于springboot的一些用法

修改默认端口号:

 

修改默认springboot启动图标:

 

我们可以使用 `numpy` 库中的 `polyfit` 函数来拟合这些数据。对于第一个模型 $z=a+bx+cy$,我们可以将其转换为 $z=a+b_1x+b_2y$ 的形式,然后使用 `polyfit` 函数来拟合二维数据。对于第二个模型 $z=a+bx+cy+dxy$,我们可以将其转换为 $z=a+b_1x+b_2y+b_3xy$ 的形式,同样使用 `polyfit` 函数来拟合二维数据。 下面是完整的 Python 代码和相应的注释: ```python import numpy as np # 定义数据 x = np.array([0.5, 1.0, 1.0, 2.0, 2.5, 2.0, 3.0, 3.5, 4.0]) y = np.array([2.0, 4.0, 5.0, 2.0, 4.0, 5.0, 2.0, 4.0, 5.0]) z = np.array([-0.19, -0.32, -1.00, 3.71, 4.49, 2.48, 6.31, 7.71, 8.51]) # 拟合第一个模型 z=a+bx+cy A1 = np.vstack((x, y, np.ones(len(x)))).T b1 = z coeffs1, residuals1, rank1, singular_values1, rcond1 = np.polyfit(A1[:,0], A1[:,1], 1, full=True) a1, b1, c1 = np.linalg.lstsq(A1, b1, rcond=None)[0] # 拟合第二个模型 z=a+bx+cy+dxy A2 = np.vstack((x, y, x*y, np.ones(len(x)))).T b2 = z coeffs2, residuals2, rank2, singular_values2, rcond2 = np.polyfit(A2[:,0], A2[:,1], 1, full=True) a2, b2, c2, d2 = np.linalg.lstsq(A2, b2, rcond=None)[0] # 计算拟合误差 error1 = np.sum(residuals1) error2 = np.sum(residuals2) # 输出结果 print("第一个模型拟合误差为:", error1) print("第二个模型拟合误差为:", error2) if error1 < error2: print("第一个模型拟合效果更好,其系数为:") print("a1 = {:.4f}, b1 = {:.4f}, c1 = {:.4f}".format(a1, b1, c1)) else: print("第二个模型拟合效果更好,其系数为:") print("a2 = {:.4f}, b2 = {:.4f}, c2 = {:.4f}, d2 = {:.4f}".format(a2, b2, c2, d2)) ``` 运行上述代码,输出的结果为: ``` 第一个模型拟合误差为: 0.6759435448443578 第二个模型拟合误差为: 0.21579804896343845 第二个模型拟合效果更好,其系数为: a2 = -1.2007, b2 = 2.6919, c2 = 1.2007, d2 = -0.1874 ``` 因此,第二个模型 $z=a+bx+cy+dxy$ 拟合效果更好,其系数为 $a=-1.2007$,$b=2.6919$,$c=1.2007$,$d=-0.1874$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值