22.0、C语言数据结构——二叉排序树

22.0、C语言数据结构——二叉排序树

二叉排序树(Binary Sort Tree)又称为二叉查找树,他可以是一棵空树,或者具有下列性质 ->

        - 若他的左子树不为空,则左子树上所有结点的值均小于他的根结点的值;

        - 若他的右子树不为空,则左子树上所有结点的值均大于他的根结点的值;

        - 他的左、右子树也分别为二叉排序树(可用递归的方式实现)

增加、删除、查询代码如下->

#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>

typedef struct Node {
	int data;
	struct Node* lchild;
	struct Node* rchild;
}Node;

typedef struct BinaryTree {
	Node* rNode;
	int num;
}Tree;

//初始化根结点
void InitRootNode(Tree* tree) {
	int rootData = 0;
	scanf("%d",&rootData);
	Node* tmp = (Node*)malloc(sizeof(Node));
	assert(tmp != NULL);
	tmp->data = rootData;
	tmp->lchild = NULL;
	tmp->rchild = NULL;
	tree->rNode = tmp;
	tree->num = 1;
}

//添加结点
void addTreeNode(Tree* tree) {
	Node* tmp = (Node*)malloc(sizeof(Node));
	assert(tmp != NULL);
	int newNodeData = 0;
	scanf("%d",&newNodeData);
	tmp->data = newNodeData;
	tmp->lchild = NULL;
	tmp->rchild = NULL;
	Node* tmp2 = tree->rNode;
	while(1) {
		if (newNodeData > tmp2->data) {
			if (tmp2->rchild == NULL) {
				tmp2->rchild = tmp;
				tree->num++;
				break;
			}
			tmp2 = tmp2->rchild;
		}
		else {
			if (tmp2->lchild == NULL) {
				tmp2->lchild = tmp;
				tree->num++;
				break;
			}
			tmp2 = tmp2->lchild;
		}
	}
}

//结点查找
int searchTreeNode(Tree* tree,int data) {
	Node* tmp = tree->rNode;
	while (tmp != NULL) {
		if (data == tmp->data) {
			return 1;
		}
		else if (data > tmp->data) {
			tmp = tmp->rchild;
		}
		else if (data < tmp->data) {
			tmp = tmp->lchild;
		}
	}
	return 0;
}

//结点删除
int deleteTreeNode(Tree* tree,int key) {
	Node* tmp = tree->rNode;
	if (!tree) {
		return 0;
	}
	else {
		if (key == tmp->data) {
			return Delete(tree);
		}
		else if (key < tmp->data) {
			return deleteTreeNode(tmp->lchild,key);
		}
		else {
			return deleteTreeNode(tmp->rchild, key);
		}
	}
}

int Delete(Tree* tree) {
	Node* q;
	Node* s;
	Node* p = tree->rNode;
	if (q->rchild == NULL) {
		q = p;
		p = p->lchild;
		free(q);
	}
	else if (p->lchild == NULL) {
		q = p;
		p = p->rchild;
		free(q);
	}
	else {
		q = p;
		s = p->lchild;
		while (s->rchild) {
			q = s;
			s = s->rchild;
		}
		p->data = s->data;
		if (q != p) {
			q->rchild = s->lchild;
		}
		else {
			q->lchild = s->lchild;
		}
		free(s);
	}
	return 1;
}

int main() {

	return 0;
}

这里主要说一下删除结点的步骤 ->

        1. 待删除的结点只有左子树或者只有右子树的情况下,我们只需要将该结点的子树接到待删除的父结点处即可;

        2. 待删除的结点是叶子结点,直接删除即可;

        3. 待删除的结点既有左子树也有右子树,将该二叉树进行中序遍历,得到待删除结点的前驱接点或者后继结点,将待删除结点的值替换成 -> 前驱结点的值或后继结点的值,这里就先讨论前驱结点这一种情况),再将前驱结点的父结点指向前驱结点的左子树,最后将前驱结点的空间释放掉即可;
        (如果是将待删除结点的值替换成 -> 后继结点的值,就将后继结点的父结点指向后继结点的右子树,最后将后继结点的空间释放掉即可)

结点的添加、遍历 ->

        如果待添加的结点的值比根结点小放根结点左边,反之放右边,然后依次往下走小的放左边大的放右边,直到遍历至可存放的位置将新结点结存放进去即可;

        遍历查找结点也是一样,从根结点开始比较,待查找的结点比该结点大就往右走,反之往左走,直到查找到该结点然后返回,如果查找至 NULL 还未找到就是查找失败了;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值