对深度学习的认识

1.深度学习的定义:
深度学习算法是一类基于生物学对人脑的认识,将神经-中枢-人脑的工作原理设计成一个不断迭代、不断抽象的过程。
2.我的认识
以上的学术性语言的叙述很抽象,并不能明了的认识“到底什么是深度学习?”我认为讲得简单一点就是,深度学习是能够根据算法自动的学习,把不计其数的数据放入算法中,然后系统自动地从海量的数据中学习,让数据自己说话,提取自己所需要的东西。你不告诉机器一个物体的概念,然后让它自己去领悟这个物体的特性,就像告诉小孩如何去认识世界。一个典型的基于深度学习的图像识别的例子:Google brain的深度网络自动识别猫特征,表现出“自我意识”。神经网络通过机器学习的方式,我们不用告诉它“猫长什么样子”,它自己能过通过图片等数据来琢磨出“是什么是猫,猫长什么样子”。
3、深度学习的网络模型
深度学习的网络模型包括卷积神经网络、生成对抗网络、递归神经网络等,卷积神经网络最常用。我们生活中随处可见的人脸识别、车牌识别、医学图像识别等技术都是深度学习的产物。
4、学习深度学习需要具备的条件
学习深度学习需要一定的数学知识基础如线性代数、概率与统计、微积分等,要想进行更深一步的学习就要认真学习数学并捡起之前遗忘的数学知识。

【参考文献】张琦,张荣梅,陈彬.基于深度学习的图像识别技术研究综述[J],河北省科学院学报,1001-9383(2019)03-0028-09

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页