1、图的深度优先搜索I
7-1 图的深度优先搜索I (100 分)
无向图 G 有 n 个顶点和 m 条边。求图G的深度优先搜索树(森林)以及每个顶点的发现时间和完成时间。每个连通分量从编号最小的结点开始搜索,邻接顶点选择顺序遵循边的输入顺序。
在搜索过程中,第一次遇到一个结点,称该结点被发现;一个结点的所有邻接结点都搜索完,该结点的搜索被完成。深度优先搜索维护一个时钟,时钟从0开始计数,结点被搜索发现或完成时,时钟计数增1,然后为当前结点盖上时间戳。一个结点被搜索发现和完成的时间戳分别称为该结点的发现时间和完成时间
输入格式:
第1行,2个整数n和m,用空格分隔,分别表示顶点数和边数, 1≤n≤50000, 1≤m≤100000.
第2到m+1行,每行两个整数u和v,用空格分隔,表示顶点u到顶点v有一条边,u和v是顶点编号,1≤u,v≤n.
输出格式:
第1到n行,每行两个整数di和fi,用空格分隔,表示第i个顶点的发现时间和完成时间1≤i≤n 。
第n+1行,1个整数 k ,表示图的深度优先搜索树(森林)的边数。
第n+2到n+k+1行,每行两个整数u和v,表示深度优先搜索树(森林)的一条边<u,v>,边的输出顺序按 v 结点编号从小到大。
输入样例:
在这里给出一组输入。例如:
6 5
1 3
1 2
2 3
4 5
5 6
输出样例:
在这里给出相应的输出。例如:
1 6
3 4
2 5
7 12
8 11
9 10
4
3 2
1 3
4 5
5 6
这个题的图采用邻接链表存储图,首先要弄明白图怎么深度优先搜索:首先找到一个连通分量里的标号最小点,然后找它邻接链表里的第一个点,然后继续找那个点的邻接链表里的第一个点,直至有点的邻接链表里的点都被访问过(就是找到头了,邻接链表里的点就是他的上一个节点),然后递归找邻接链表里下一个没找过的点,每次找到后就用visited做个标记就好,从头到尾遍历一下有无没标记的点,有的话就是有不同的连通分量,直接对第一个未标记的点DFS即可。
同时维护时钟的话用一个tim保存现在的时间即可。
#include<bits/stdc++.h>
using namespace std;
#define maxn 50006
vector<int>node[maxn];
int tim = 1;
int cnt = 1;
struct Time {
int start;
int end;
}T[maxn];
struct edges {
int from;
int to;
}e[maxn*2];
bool visited[maxn] = {
0};
bool cmp(edges a,edges b) {
return a.to < b.to;
}
void checktime(int l) {
if (visited[l] == 1) {
T[l].end = tim;
tim++;
}
else {
T[l].start = tim;
tim++;
visited[l] = 1;
}
}
void DFS(int n) {
checktime(n);
for (int i = 0; i < node[n].size(); i++) {
int temp = node[n][i];
if (visited[temp] == 1)continue;
e[cnt].from = n;
e[cnt].to = temp;
cnt++;
DFS(temp);
}
checktime(n);
}
int main() {
int n, m;
scanf("%d %d", &n, &m);
for (int i = 1; i <= m; i++) {
int edge1, edge2;
scanf("%d %d", &edge1, &edge2);
node[edge1].push_back(edge2);
node[edge2].push_back(edge1);
}
DFS(1);
for (int i = 1; i <= n
深度优先搜索与图算法应用

本文通过四个问题实例——图的深度优先搜索、圆的块统计、发红包的优化和供电线路规划,详细介绍了深度优先搜索(DFS)及其在解决实际问题中的应用,如并查集、拓扑排序和最小支撑树等算法。每个问题都提供了具体的操作方法和思路,如邻接链表存储、路径压缩、拓扑排序和Prim算法的变种。
最低0.47元/天 解锁文章
1305

被折叠的 条评论
为什么被折叠?



