研究的主要内容与可行性分析
主要内容
基于Spark的分布式计算和处理能力,对大规模的数据进行处理和分析,以提高系统的运行效率。
利用知识图谱技术,将不同来源、不同类型的数据融合在一起,并通过自然语言处理、机器学习等技术进行处理,从而提供更加精准、个性化的推荐服务。
基于用户历史行为、酒店信息、地理位置等数据源的信息融合和处理,进行更加全面和准确的推荐。
设计和实现一个基大数据的酒店推荐系统,包括数据预处理、特征提取、模型训练、推荐等模块。
对该系统的性能进行评估和测试,包括准确率、召回率、F1得分等指标的评估。
使用大数据技术对酒店数据进行可视化分析,制作商业大屏报表。
模拟酒店网站,实现基础业务功能:登录/注册、预订酒店、评论等。




本文介绍了一项大数据毕业设计,利用Spark的分布式计算处理大规模数据,结合知识图谱技术进行数据融合,通过自然语言处理和机器学习进行情感分析,构建精准的酒店推荐系统。设计中包括数据预处理、特征提取、模型训练和推荐模块,并对系统性能进行评估,同时实现了数据可视化和酒店业务功能模拟。
最低0.47元/天 解锁文章

895

被折叠的 条评论
为什么被折叠?



