ICLR[2024] TIMEMIXER: DECOMPOSABLE MULTISCALE MIXING FOR TIME SERIES FORECASTING 提出了 TimeMixer 作为一个完全基于 MLP 的架构,主要包含两个部分:(1)过去可分解混合 (PDM)模块:PDM 多尺度序列进行分解,并进一步分别在细到粗和粗到细方向上混合分解的季节和趋势分量,依次聚合微观季节和宏观趋势信息(2)未来多预测器混合 (FMM) 块:集成了多个预测器,以利用多尺度观测的互补预测能力。