数值分析——范数

本文介绍了数值分析中的向量范数和矩阵范数,包括1范数、2范数、无穷范数以及F范数。向量范数的三种类型定义了不同类型的加权和,而矩阵范数则涉及列和行最大和以及特征值。此外,文章阐述了范数的基本性质,如非负性、齐次性和三角不等式,并指出在有限维空间中各种范数的等价性。

在数值分析中我们讨论范数只讨论两种:向量范数和矩阵范数

1.向量范数

向量范数我们主要说三种范数:1范数,2范数,无穷范数。

向量的1范数是指向量的每个元素绝对值求和

向量的2范数是指向量的每个元素平方求和再开方

向量的无穷范数是向量元素绝对值的最大值

向量范数的三条性质:非负数,齐次性,三角不等式。

有限维空间上任何两种范数均等价故任何两种向量范数都等价。

2.矩阵范数

矩阵范数我们主要说四种:1范数,2范数,无穷范数,F范数。

矩阵的1范数是指每一列上元素的绝对值的和的最大值(我习惯叫列范数)

矩阵的2范数是指矩阵的转置和矩阵的乘积的特征值的最大值

矩阵的无穷范数是指每一行上元素的绝对值的和的最大值(我习惯称为行范数)

矩阵的F范数是指矩阵每个元素的平方求和再开方

矩阵范数的四条性质:非负数,齐次性,三角不等式,乘法不等式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

用编程写诗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值