回归树模型

本文只介绍回归树模型与决策树模型的区别。如需了解完整的理论,请看链接:决策树模型笔记

一、回归树模型vs决策树模型:

  • 回归树模型是决策树模型的推广。
  • 决策树模型解决的是分类问题,预测结果只有有限种可能性,而回归树模型解决的是回归问题,即预测结果是一个实数。

二、回归树模型的叶结点:

回归树模型同决策树模型,叶结点用来保存该路径上的预测结果,那回归树模型叶结点取值如何填写?

以预测动物的体重案例为例:一般在训练过程中,叶结点的取值为当前结点样本集的平均值
在这里插入图片描述

三、如何决定每个非叶结点上的特征类型:

决策树模型使用熵来计算信息增益,进而选择结点的特征,回归树模型使用方差(Variance)替代了熵来计算信息增益。

对于信息增益的计算思路同决策树模型:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

姓蔡小朋友

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值