windows 安装anaconda、cuda、cudnn

安装前先查看一下电脑支持的最大cuda版本

鼠标右键打开英伟达控制面板(Win11打开展示更多)

点击系统信息

点击组件查看,我的是支持最大12.6.65版本

(若链接点不进去或者下载比较慢的,挂个梯子就行)

一、安装anaconda

anaconda官方下载链接(输入邮箱后获取下载入口,qq,gmail都行)

Download Anaconda Distribution | AnacondaDownload Anaconda's open-source Distribution today. Discover the easiest way to perform Python/R data science and machine learning on a single machine.https://www.anaconda.com/download

直接安装,安装路径不建议c盘,后期创建环境下载库和依赖非常吃内存

把这个添加系统环境变量勾上,就不需要手动添加系统环境变量了

其他默认即可。

安装完成,按下win+r,输入cmd打开终端,输入conda和python,查看安装情况

二,安装cuda

前往NVIDIA官网下载cuda

CUDA Toolkit 12.8 Update 1 Downloads | NVIDIA Developerhttps://developer.nvidia.com/cuda-downloads/查看你想要的版本

版本选择看自己做什么项目,是否有限制等等,我之前做的6d姿态估计用的是12.1.1,当时下的最高版本,应该没什么影响

选择对应版本信息即可,本地安装download

打开cuda_12.1.1_531.14_windows直接安装(注意c盘留空间,下面安装的是临时文件,安装完成后会删除)

同意并继续

选择自定义安装

只安装cuda,其他不需要勾选,安装旧版本的cuda不需要安他给的英伟达驱动来

默认路径就行

等待安装

安装完成后,在终端输入nvcc -V查看安装的cuda版本

三,安装cudnn

cudnn英伟达官方下载链接

CUDA Deep Neural Network (cuDNN) | NVIDIA DevelopercuDNN provides researchers and developers with high-performance GPU acceleration.https://developer.nvidia.com/cudnn

打开其他版本

选择与cuda对应版本的cudnn

下载到本地

直接安装,都选择默认即可

最后一步找到cudnn安装路径,将bin,lib,include三个文件夹复制到cuda安装路径里面即可

在cmd终端输入

cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\extras\demo_suite

进入两个检测文件的目录,依次输入bandwithTest.exe和deviceQuery.exe,结果里面看到两个pass就说明cudnn安装成功

<think>嗯,用户想了解CUDAcuDNN和PyTorch之间的兼容版本组合以及安装指南。首先,我需要回忆一下这些组件之间的关系。记得CUDA是NVIDIA的并行计算平台,cuDNN是深度学习的加速库,PyTorch则是深度学习框架。它们的版本必须匹配,否则会出现兼容性问题。根据之前的引用资料,比如引用[3]提到显卡驱动决定CUDA版本,而CUDA版本又决定了CUDA Toolkit、cuDNN和PyTorch的版本。所以正确的流程应该是先确定显卡驱动支持的CUDA版本,再根据CUDA版本选择对应的cuDNN和PyTorch版本。 接下来,用户可能需要具体的步骤来确定他们的环境。例如,如何查看显卡驱动版本?可以用nvidia-smi命令,里面显示的CUDA版本其实是驱动支持的最高版本,实际安装CUDA Toolkit可能低于这个版本。比如驱动显示12.4,但用户可以安装11.8的CUDA Toolkit,只要不超过驱动支持的版本。 然后,关于版本对应关系,我需要整理常见的组合。例如PyTorch 2.0通常对应CUDA 11.7或11.8,而PyTorch 1.12对应CUDA 11.6。cuDNN的版本需要和CUDA Toolkit匹配,比如CUDA 11.8一般用cuDNN 8.7.x。这时候可能需要查官方文档,确保准确性。 安装步骤方面,用户可能使用conda或者pip。conda可以自动处理依赖,比如安装PyTorch时会自动下载对应的CUDAcuDNN,但有时候可能需要手动安装CUDA Toolkit,尤其是在需要特定版本的情况下。引用[4]提到在Anaconda环境中安装CUDA可能和系统安装不同,需要注意环境隔离。 验证部分也很重要,用户安装后需要检查PyTorch是否能正确识别CUDA。通过torch.cuda.is_available()来确认,同时查看版本号是否匹配。如果出现问题,可能需要检查版本是否一致,或者重新安装正确的版本。 用户可能遇到的问题包括版本不匹配导致的错误,比如引用[2]中提到的必须确保PyTorch和CUDA版本兼容。这时候需要根据错误信息调整安装命令,或者更新显卡驱动。另外,不同操作系统可能有不同的安装方法,用户的问题是在Windows 11下,所以需要提供相应的指导。 最后,生成的相关问题需要覆盖用户可能进一步的需求,比如如何更新驱动,conda和pip的区别,多CUDA版本管理,以及常见的安装错误解决方法。这些扩展问题可以帮助用户更全面地理解和解决安装过程中可能遇到的挑战。</think>### CUDAcuDNN与PyTorch版本兼容性指南 #### 一、版本对应关系核心逻辑 1. **依赖层级**:显卡驱动 → CUDA版本 → CUDA Toolkit/cuDNN → PyTorch[^3] 2. **验证顺序**:需先确定显卡驱动支持的最高CUDA版本,再选择匹配的PyTorch版本。 #### 二、具体操作步骤 1. **查看显卡驱动支持的CUDA版本** ```bash nvidia-smi # 输出右上角显示最高支持的CUDA版本 ``` 例如显示`CUDA Version: 12.4`,可安装≤12.4的CUDA Toolkit。 2. **PyTorch与CUDA版本对应表(部分常见组合)** | PyTorch版本 | 支持CUDA版本 | cuDNN要求 | 安装命令示例 | |-------------|--------------|----------------|-----------------------------| | 2.0+ | 11.7/11.8 | ≥8.5.0 | `conda install pytorch torchvision cudatoolkit=11.8` | | 1.12.0 | 11.6 | 8.3.2 | `pip install torch==1.12.0+cu116` | | 2.1.0 | 12.1 | 8.9.5 | `conda install pytorch cudatoolkit=12.1` | 3. **cuDNNCUDA对应关系** - CUDA 11.x → cuDNN 8.x.x - CUDA 12.x → cuDNN 8.9.x/9.x.x #### 三、安装验证方法 ```python import torch print(torch.__version__) # 查看PyTorch版本 print(torch.version.cuda) # 查看PyTorch绑定的CUDA版本 print(torch.backends.cudnn.version()) # 查看cuDNN版本 ``` #### 四、典型安装问题 1. **版本冲突**:若出现`undefined symbol`错误,通常是CUDA Toolkit与PyTorch版本不匹配[^2] 2. **驱动过旧**:`CUDA driver version is insufficient`提示需更新显卡驱动 3. **环境污染**:建议使用conda虚拟环境隔离不同项目依赖[^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值