CFD数据集.mat文件转换为png

将CFD(CrackForest Datasets)数据集的GroundTruth中的.mat文件转换为便于使用的maskpng

dotmat2png.py

import scipy.io
import numpy as np
import cv2
import os


def save_mask(mat_file, save_path):
    mat = scipy.io.loadmat(mat_file)
    np_seg = mat['groundTruth'][0][0][0]
    (y, x) = np.where(np_seg == 2)
    np_seg[y, x] = 255
    (y, x) = np.where(np_seg == 1)
    np_seg[y, x] = 0

    cv2.imwrite(save_path, np_seg)
    print('save mask:', save_path)


def main():
    mat_dir = './groundTruth/'   # mat文件的路径
    save_dir = './mask/'         # 保存为maskpng的路径 自己创建
    mat_files = os.listdir(mat_dir)
    for mat_file in mat_files:
        save_mask(mat_dir + mat_file, save_dir + mat_file.split('.')[0] + '.png')

main()

原始.mat文件,如下:

image-20240427154647879

转换后的maskpng图片,如下:

image-20240427154725669

对应原始图片,如下:

image-20240427154801295
修改后的CFD数据集链接:CFD数据集

### 计算流体力学 (CFD) 数据集的相关资源 计算流体力学(CFD)作为研究流体流动的重要工具,在科学研究和工业应用中扮演着重要角色。为了支持研究人员和工程师的需求,许多公开的数据集和资源被开发出来以促进该领域的发展。 #### 1. **公共数据集** - **OpenFOAM 官方案例集合**: OpenFOAM 是一个广泛使用的开源 CFD 软件包,其官方文档提供了大量的测试案例和数据集,涵盖了从简单的管道流动到复杂的多相流问题[^1]。这些案例不仅包含了网格文件、边界条件设置,还附带了详细的说明文档。 - **NASA Turbulence Modeling Resource**: NASA 提供了一个专注于湍流建模的公共资源库,其中包含了许多经典的湍流流动实验数据和对应的数值模拟结果。这对于验证和改进湍流模型非常有用[^2]。 - **ISOBAR Dataset**: 这是一个由 DeepCFD 开发团队发布的数据集,专门针对非均匀稳态层流问题设计。它利用深度学习技术生成了大量的高质量训练样本,适用于机器学习驱动的 CFD 应用场景。 #### 2. **学术机构发布的数据集** - 多所高校和研究机构会定期发布他们的研究成果及相关数据集。例如,斯坦福大学的 FlowNet 项目提供了一组用于训练神经网络的二维和三维流场数据[^3]。这类数据通常经过严格的校验过程,能够有效减少随机误差的影响。 #### 3. **商业软件配套资料** 虽然大部分商业 CFD 软件如 ANSYS Fluent 或 COMSOL Multiphysics 的内置数据库仅限于授权用户访问,但它们往往会免费分享一部分基础教程中的输入参数配置表单以及初始状态设定值给潜在客户试用[^4]。 --- ### 如何获取上述提到的具体链接? 对于希望深入探索的朋友来说,可以直接前往以下网站查找更多细节: - [计算流体力学程序资源库](https://gitcode.com/open-source-toolkit/8b707),这里除了源码外也可能存在示例运行所需的初始化数据; - 参考文献中提及的其他在线平台亦可通过搜索引擎进一步挖掘相关内容。 ```python import requests def fetch_cfd_datasets(url_list): datasets = [] for url in url_list: response = requests.get(url) if response.status_code == 200: datasets.append(response.text[:100]) # 截取前100字符展示 return datasets urls = [ "https://openfoam.org/download/", "https://turbmodels.larc.nasa.gov/", "http://deepcfd.readthedocs.io/" ] print(fetch_cfd_datasets(urls)) ``` 此脚本可以帮助快速预览几个知名站点上的部分内容摘要。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Oraer_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值