10、Java 方法的递归调用详解(递归调用的分析和案例:阶乘、斐波那契、猴子吃桃)

一、递归缩写

🌱 YAML:是 SpringBoot 框架推荐的一种配置文件,它的全称是【YAML Ain’t a Markup Language(YAML 不是一种标记语言)】,可以看到 YAML 是一个句子的递归缩写。

🌱 GNU:是一个自由的操作系统,其内容软件完全以 GPL 方法发布,但它不包含具著作权的 Unix 代码。它的全称是【GNU’s Not Unix(GNU 并非 Unix)】,GNU 也是一个句子的递归缩写。

在这里插入图片描述

二、递归调用

思考:如何计算 [1, n] 范围内的整数的累加和 ?

下面的代码通过【循环】的方式计算 [1, n] 范围内的累加和,本篇文章学习另一种求累加和的方式:递归求和

public class RecursionTest {

    public static void main(String[] args) {
        // sumByCircular = 15
        System.out.println("sumByCircular = " + sumByCircular(5));
    }

    /**
     * 通过【循环】计算 [1, n] 范围内的整数的累加和
     */
    private static int sumByCircular(int n) {
        int sum = 0;
        for (int i = 1; i <= n; i++) {
            sum += i;
        }
        return sum;
    }

}

🍉【分析】求 [1, n] 范围的累加和,可以理解为 [1, n-1] 范围的累加和, 然后再加 n
🍉 如:[1, 5] 范围的累加和可如下思考:
🍉 ① 求 [1, 5] 范围的累加和,可以理解为 [1, 4] 范围的累加和, 然后再加 5
🍉 ② 求 [1, 4] 范围的累加和,可以理解为 [1, 3] 范围的累加和, 然后再加 4
🍉 ③ 求 [1, 3] 范围的累加和,可以理解为 [1, 2] 范围的累加和, 然后再加 3
🍉 ④ 求 [1, 2] 范围的累加和,可以理解为 [1, 1] 范围的累加和, 然后再加 2

(1) 递归方式求累加和

使用【递归】计算 [1, n] 范围内的整数的累加和的代码:

public class RecursionTest {

    public static void main(String[] args) {
        // sumByRecursion = 21
        System.out.println("sumByRecursion = " + sumByRecursion(6));
    }

    /**
     * 使用【递归】计算 [1, n] 范围的累加和
     */
    private static int sumByRecursion(int n) {
        if (n <= 1) return 1; // 递归终止条件
        return n + sumByRecursion(n - 1);
    }

}

在这里插入图片描述
如果递归没有终止条件
StackOverflowError(栈溢出)
在这里插入图片描述

(2) 递归内存分析

int sum = sumByRecursion(3);

执行上面代码,JVM 栈空间情况如下图:

在这里插入图片描述

🥤 递归调用若没有终止条件,将会一直消耗栈空间
🥤 最终会导致栈内存溢出(Stack OVerflow)
🥤 递归必须要有一个明确的终止条件(边界条件、递归基)

三、递归调用(概念)

🍬方法中调用方法本身,每次调用时传入不同的参数。
🍬 递归提供编程者一个解决复杂问题的思路。
在这里插入图片描述

四、递归调用举例

看下面的代码, 思考输出结果:

public class RecursionDemo {

   public static void main(String[] args) {
       test(5);
       /*
           output: 
                   n = 2
                   n = 3
                   n = 4
                   n = 5
        */
   }

   private static void test(int n) {
       if (n > 2) {
           test(n - 1);
       }
       System.out.println("n = " + n);
   }

}

在这里插入图片描述

public class RecursionDemo {

    public static void main(String[] args) {
        test(5); // 只输出:n = 2
    }

    private static void test(int n) {
        if (n > 2) {
            test(n - 1);
        } else {
            System.out.println("n = " + n);
        }
    }

}

通过递归计算阶乘:

public class RecursionDemo {

    public static void main(String[] args) {
        int result = factorial(5);
        // result = 120
        System.out.println("result = " + result);
    }

    private static int factorial(int n) {
        // 如果 n 小于等于 1, 默认认为阶乘结果是 1 
        if (n <= 1) return 1;
        return factorial(n - 1) * n;
    }

}

在这里插入图片描述

五、递归注意事项

📖 调用方法会在栈空间分配一块新的、独立的、受保护的栈空间(栈帧)
📖 方法的局部变量是独立的,不会相互受影响
📖 调用递归方法的参数必须向退出递归的条件逼近,否则会导致无限递归,进而导致 StackOverflowError(栈溢出)

六、斐波那契数列

在这里插入图片描述

斐波那契数列数的几何模型在大自然、化学、生活中经常存在。

在这里插入图片描述

📒 斐波那契数列:Fibonacci sequence
📒 斐波那契数列:黄金分割数列
📒 斐波那契数列: 兔子数列
📒 斐波那契数列:由数学家莱昂纳多 斐波那契提出的
在这里插入图片描述

斐波那契数列描述:有一列数,前两个数是1,从第3个数开始,后面的数都是它的前面的两个数之和,如此规则构成的一系列数就是斐波那契数列。
斐波那契数列举例: 1、1、2、3、5、8、13、21、34、55、89

用代码实现:输入一个数字(代表斐波那契数列的第几项),打印斐波那契数列第几项的值

public class RecursionDemo {
    public static void main(String[] args) {
        // 89
        System.out.println(fibonacci(11));
    }

    /**
     * 递归求斐波那契数列的第 n 项的值
     */
    private static int fibonacci(int n) {
        if (n <= 2) return 1;
        return fibonacci(n - 1) + fibonacci(n - 2);
    }
}

递归方式实现斐波那契数列非常地不合适,但也是一种方法(以后讨论它的另外一种方法)

七、猴子吃桃

在这里插入图片描述

Monkey 有一篮子的桃子 🍑,不知具体多少个。
Monkey 第一天吃了桃子 🍑 总数的一半,并多吃一个。
以后猴子 🐒 每天都吃其中的一半,并多吃一个。
第十天的时候就只有1个桃子了。
问:篮子里面一开始有多少个桃子🍑 ?


分析:

🔑 已知条件:
① 第十天只有1个桃子
② 每天吃当前桃子总数的一半,并多吃一个
🔑 推导
令 day(n) 是第 n 天的桃子数
① day(10) = 1
② day(9) = 4 【day(9) / 2 - 1 = day(10)】 第9天的桃子数的一半,再减1要等于第10天的桃子数
③ day(8) = 10 【day(8) / 2 - 1 = day(9)】 第8天的桃子数的一半,再减1要等于第9天的桃子数
④ day(7) = 22 【day(7) / 2 - 1 = day(8)】 第7天的桃子数的一半,再减1要等于第8天的桃子数
⑤ day(6) = 46 【day(6) / 2 - 1 = day(7)】 第6天的桃子数的一半,再减1要等于第7天的桃子数

🔑 通项公式
day(n) = day(n-1) / 2 - 1【当天的桃子数等于前一天的桃子数减一半,再减1】
化简得:day(n-1) = (day(n) + 1) * 2 【前一天的桃子数等于当天的桃子数加1之后乘以2】
最终:day(n) = (day(n +1) + 1) * 2【当天的桃子数等于后一天的桃子数加1后乘以2】

代码实现:

public class MonkeyPeachDemo {
    public static void main(String[] args) {
        // 第1天的桃子数:1534
        System.out.println("第1天的桃子数:" + dayPeach(1));
    }

    private static int dayPeach(int d) {
        if (d == 10) return 1;
        return (dayPeach(d + 1) + 1) * 2;
    }
}

若发现错误,请不吝赐教。Have a nice day!

评论 85
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张国庆Jagochan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值