【bigdata】Hive、SparkSQL是如何决定写文件的数量的

本文探讨了Hive和SparkSQL在处理数据写入时如何决定文件数量。在Hive中,无shuffle操作时每个插入语句产生一个文件,而有shuffle时文件数量由reduce任务决定。SparkSQL即使无shuffle也可能会产生多个文件,而在shuffle场景下,每个key对应一个写任务,可能导致小文件问题。为解决此问题,Spark2.4.0引入动态规划,通过开启`spark.sql.adaptive.enabled`可优化文件生成,减少小文件数量。
摘要由CSDN通过智能技术生成

Hive自身和Spark都提供了对Hive的SQL支持,用SQL的交互方式操作Hive底层的HDFS文件,两种方式在写文件的时候有一些区别:

1. Hive

1.1 without shuffle

Hive在通过SQL写文件是通过MapReduce任务完成的,如下面这个例子:

hive> insert into table temp.czc_hive_test_write values ('col1_value', 1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

九层之台起于累土

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值