论文阅读——Probabilistic error cancellation with sparse Pauli-Lindblad models on noisy quantum processors

创新点

  1. 稀疏 Pauli-Lindblad 噪声模型:

    • 提出了一种新的稀疏 Pauli-Lindblad 噪声模型,用于捕获量子处理器上的相关噪声。
    • 该模型仅包含与量子处理器拓扑相关的低权重 Pauli 项(weight-one 和 weight-two Pauli 项),从而减少了模型复杂度并提升了学习效率。
  2. 可扩展的误差学习和消除协议:

    • 提出了一个可扩展的方法来学习和逆转量子电路的噪声模型。
    • 该方法在超导量子处理器上进行了实验验证,可扩展到具有数十个量子比特的电路。
  3. 有效的误差逆转:

    • 使用稀疏模型生成的准概率分布来实现概率误差消除(Probabilistic Error Cancellation, PEC),大幅减少了噪声对测量结果的影响。
    • 提供了理论保证,证明了这种方法在适度的噪声水平下具有良好的误差界。

方法

  1. 稀疏噪声建模:

    • 通过基于 Lindblad 主方程的噪声表示,将量子系统的噪声建模为一组 Pauli 项的叠加。
    • 使用稀疏表示,仅选择与量子比特连接性相关的局部 Pauli 项(如一体和两体 Pauli)。
    • 模型系数通过实验数据拟合而来,拟合过程通过非负最小二乘法优化完成。
  2. 噪声学习和拟合:

    • 利用基准量子电路来估计噪声模型中每个 Pauli 项的保真度。
    • 对于较高深度的电路,保真度通过拟合指数衰减曲线来估计。
    • 通过对称性和补充测量,处理测量中缺失的信息,确保噪声模型的完整性。
  3. 误差逆转:

    • 通过逆转噪声通道 Λ−1\Lambda^{-1}Λ−1 的数学表示,实现误差消除。
    • 具体实现中,使用准概率分布对 Pauli 项进行采样,并对电路结果进行加权,得到无偏估计值。
  4. 实验验证:

    • 在超导量子处理器上运行含多个量子比特的 Ising 模型演化电路,验证了该方法对高权重(如 weight-9 和 weight-10)观测量的误差消除效果。

总结

        这篇论文提供了一种实际可行的路径,将误差消除技术扩展到具有相关噪声的大型量子电路。其核心创新在于使用稀疏的 Pauli-Lindblad 模型,通过实验验证了其在多量子比特超导量子处理器上的有效性和扩展性。 

论文复现

1. 环境准备

  • 量子计算框架:论文中使用的实验是基于量子硬件进行的,因此你需要使用支持量子硬件和模拟的框架。最常见的量子计算框架包括:
    • IBM Qiskit:IBM 提供的量子计算平台,允许用户访问超导量子计算机。
    • Google Cirq:Google 的量子计算框架,适用于模拟和真实的量子计算。
    • Microsoft Quantum Development Kit (QDK):微软的量子开发工具,支持量子编程和模拟。
    • Rigetti Forest:Rigetti 提供的量子云平台,可以访问量子计算机。

建议使用 IBM Qiskit,因为它是论文中提到的实验所用的平台之一,并且它提供了量子计算机访问的接口(如 IBM Quantum 的真实处理器)。

2. 硬件要求

论文中的实验使用了超导量子处理器,如 IBM 提供的量子计算机。你需要:

  • 量子硬件资源:在 IBM Quantum 上,你可以通过 Qiskit 访问真实的量子硬件,像IBM HummingbirdIBM FalconIBM Eagle 量子处理器。
  • 量子云平台:你需要在量子云平台上注册账户,并获取量子计算资源。IBM 提供免费的量子硬件访问权限(有限的量子比特和计算时间),以及收费计划。

3. 实验步骤

论文中有两个主要部分需要在量子计算机上实现:

  • 噪声模型的学习和拟合:通过基准量子电路估计每个 Pauli 项的保真度。这要求你在量子处理器上运行多个量子电路,以获取噪声数据(测量保真度)。
  • 概率误差消除(PEC):这部分需要你构建量子电路,并通过量子计算机上的噪声模型进行误差逆转。这个过程涉及对电路结果的加权,以减小噪声引起的偏差。

4. 具体步骤:

步骤 1:噪声建模
  • 使用 Qiskit 或其他量子框架,构建量子电路并在不同深度下运行。
  • 在实验中,使用测量不同基(如 Pauli-Z、Pauli-X 等)的量子态来估计噪声。
  • 为了获得所需的保真度,可以多次运行电路(进行重复实验),并拟合测量数据以提取保真度。
步骤 2:学习稀疏 Pauli-Lindblad 模型
  • 在量子处理器上进行基准测试,估算不同 Pauli 项的保真度。
  • 使用这些保真度来拟合稀疏的 Pauli-Lindblad 噪声模型,通常采用非负最小二乘法来确定噪声模型系数。
步骤 3:实现 PEC(概率误差消除)
  • 使用学到的噪声模型和保真度,构建用于噪声逆转的准概率分布。
  • 在每个电路层应用采样方法,选择合适的 Pauli 项,并加权结果来进行误差消除。
  • 通过多次采样,获得无偏的期望值。
步骤 4:验证实验
  • 通过实验数据和理想模拟(无噪声)的比较,验证概率误差消除的效果。确保误差消除后,实验结果趋近于理想值

        存储 nnn 个量子比特的 Pauli 通道需要 4n4^n4n 个系数的原因,主要是因为量子比特的状态空间以及 Pauli 矩阵的作用。在量子计算中,每个量子比特都可以处于一个二维量子状态,而 Pauli 矩阵则是描述量子比特上噪声作用的工具。以下是详细的解释:

附录:

1.噪声模型的复杂度如何计算?

2.如何降低噪声的参数级别?

3.如何搭建基准基准量子线路?

这样设计量子线路的原因在于 模拟噪声通道、采集量子态演化信息、并验证稀疏 Pauli 噪声模型的有效性。



 4.为什么使用块来描述矩阵操作?

 

5.具有串扰的双量子位clifford的噪声学习?

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白光白光

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值