概率论--随机变量的数字特征

数学期望

随机变量的数学期望

意义:反映随机变量平均取值的大小,体现了随机变量取值的平均水平

简称期望或均值
如果离散型随机变量X的分布律为: P { X = x k } = p k ( k = 1 , 2 , 3 , . . . ) P\{X=x_k\}=p_k(k=1,2,3,...) P{X=xk}=pk(k=1,2,3,...),并且级数 ∑ k = 1 + ∞ x k p k \sum^{+\infty}_{k=1}x_kp_k k=1+xkpk绝对收敛;
如果连续型随机变量X具有概率密度f(x),且积分 ∫ − ∞ + ∞ x f ( x ) d x \int^{+\infty}_{-\infty}xf(x)dx +xf(x)dx绝对收敛,那么随机变量X的数学期望E(X),定义为

{ ∑ k = 1 + ∞ x k p k , X 为 离 散 型 ∫ − ∞ + ∞ x f ( x ) d x , X 为 连 续 型 \begin{cases}\sum^{+\infty}_{k=1}x_kp_k,&X为离散型\\ \int^{+\infty}_{-\infty}xf(x)dx,&X为连续型 \end{cases} {k=1+xkpk,+xf(x)dx,XX

期望计算的例子

某有奖活动,活动方设置一等奖10000元共3份,二等奖5000元共10份,三等奖10元共500份,并且向社会发放了5万份抽奖券,假设某人有一张抽奖券,他参与抽奖的预期收益为多少?

解:假设奖金X是一个随机变量,它的分布律为

X10000500010
p k p_k pk 5 5 × 1 0 4 \frac{5}{5\times10^4} 5×1045 10 5 × 1 0 4 \frac{10}{5\times 10^4} 5×10410 500 5 × 1 0 4 \frac{500}{5\times10^4} 5×104500

某人的收益期望为
E ( X ) = 10000 × 5 5 × 1 0 4 + 5000 × 10 5 × 1 0 4 + 10 × 500 5 × 1 0 4 = 2.1 ( 元 ) \begin{aligned} E(X)&=10000\times \frac{5}{5\times10^4}+5000\times \frac{10}{5\times 10^4}+10\times \frac{500}{5\times10^4}\\&=2.1(元) \end{aligned} E(X)=10000×5×1045+5000×5×10410+10×5×104500=2.1()

随机变量函数的数学期望

对于单个随机变量 X X X

Y是随机变量X的函数: Y = g ( X ) Y=g(X) Y=g(X)
如果离散型随机变量X的分布律为: P { X = x k } = p k ( k = 1 , 2 , 3 , . . . ) P\{X=x_k\}=p_k(k=1,2,3,...) P{X=xk}=pk(k=1,2,3,...),并且级数 ∑ k = 1 + ∞ x k p k \sum^{+\infty}_{k=1}x_kp_k k=1+xkpk绝对收敛;
如果连续型随机变量X具有概率密度f(x),且积分 ∫ − ∞ + ∞ x f ( x ) d x \int^{+\infty}_{-\infty}xf(x)dx +xf(x)dx绝对收敛,那么

E ( Y ) = E ( g ( X ) ) = { ∑ k = 1 + ∞ g ( x k ) p k , X 为 离 散 型 ∫ − ∞ + ∞ g ( x ) f ( x ) d x , X 为 连 续 型 E(Y)=E(g(X))=\begin{cases}\sum_{k=1}^{+\infty}g(x_k)p_k,&X为离散型\\\int_{-\infty}^{+\infty}g(x)f(x)dx,&X为连续型\end{cases} E(Y)=E(g(X))={k=1+g(xk)pk,+g(x)f(x)dx,XX

由上面公式我们知道要想求得 E ( Y ) E(Y) E(Y)只需要确定 X X X的分布即可

期望计算的例子

如果X的分布律如下,求 E ( X 2 ) , E ( 2 X + 1 ) E(X^2),E(2X+1) E(X2),E(2X+1)

X-102
p k p_k pk 1 8 \frac{1}{8} 81 1 2 \frac{1}{2} 21 3 8 \frac{3}{8} 83

E ( X 2 ) = ( − 1 ) 2 × 1 8 + 0 2 × 1 2 + 2 2 × 3 8 = 13 8 E ( 2 X + 1 ) = ( − 1 ) × 1 8 + 1 × 1 2 + 5 × 3 8 = 9 4 E(X^2)=(-1)^2\times\frac{1}{8}+0^2\times\frac{1}{2}+2^2\times\frac{3}{8}=\frac{13}{8}\\ E(2X+1)=(-1)\times\frac{1}{8}+1\times\frac{1}{2}+5\times\frac{3}{8}=\frac{9}{4} E(X2)=(1)2×81+02×21+22×83=813E(2X+1)=(1)×81+1×21+5×83=49

假设某工厂可以制造出某种成品,市场对其需求量为随机变量X(吨),并且 X ∼ U ( 2000 , 4000 ) X\sim U(2000,4000) XU(2000,4000),假设每售出1吨成品的获利3万元,但是如果制造出来的成品没有及时售卖而是放在仓库,每吨成品将会花费1万元的保养费。现在工厂要进行决策,制造出多少吨成品才能使得收益最大化?

解:假设变量y为应制造出来的成品吨数,则该工厂的收益为
W = g ( X ) = { 3 y , X ≥ y 3 X − 1 × ( y − X ) , X < y W=g(X)=\begin{cases}3y,&X\geq y\\3X-1\times (y-X),&X<y\end{cases} W=g(X)={3y3X1×(yX),XyX<y
E ( X ) = ∫ − ∞ + ∞ g ( x ) f ( x ) d x = ∫ 2000 4000 g ( x ) 1 2000 d x = 1 2000 ∫ 2000 y ( 4 x − y ) d x + 1 2000 ∫ y 4000 3 y d x = 1 1000 ( − y 2 + 7000 y + 4 × 1 0 6 ) \begin{aligned}E(X)&=\int_{-\infty}^{+\infty}g(x)f(x)dx\\ &=\int_{2000}^{4000}g(x)\frac{1}{2000}dx\\ &=\frac{1}{2000}\int_{2000}^y(4x-y)dx+\frac{1}{2000}\int_y^{4000}3ydx\\ &=\frac{1}{1000}(-y^2+7000y+4\times 10^6) \end{aligned} E(X)=+g(x)f(x)dx=20004000g(x)20001dx=200012000y(4xy)dx+20001y40003ydx=10001(y2+7000y+4×106)
通过上面的式子我们看到,当y=3500时,期望 E ( W ) E(W) E(W)达到最大值,所以该工厂应该生产成品3500吨,预期收益为8250万元

对于多个随机变量 X , Y X,Y X,Y

V是随机变量X,Y的函数: V = g ( X , Y ) V=g(X,Y) V=g(X,Y).
如果离散型随机变量(X,Y)的分布律为: P { X = x i , Y = y i } = p i , j ( i , j = 1 , 2 , 3 , . . . ) P\{X=x_i,Y=y_i\}=p_{i,j}(i,j=1,2,3,...) P{X=xi,Y=yi}=pi,j(i,j=1,2,3,...),并且级数 ∑ i = 1 + ∞ ∑ j = 1 + ∞ g ( x i , y j ) p i , j \sum^{+\infty}_{i=1}\sum^{+\infty}_{j=1}g(x_i,y_j)p_{i,j} i=1+j=1+g(xi,yj)pi,j绝对收敛;
如果连续型随机变量(X,Y)具有概率密度f(x,y),且积分 ∫ − ∞ + ∞ ∫ − ∞ + ∞ g ( x , y ) f ( x , y ) d x d y \int^{+\infty}_{-\infty}\int^{+\infty}_{-\infty}g(x,y)f(x,y)dxdy ++g(x,y)f(x,y)dxdy绝对收敛,那么有

E ( V ) = E ( g ( X , Y ) ) = { ∑ j = 1 + ∞ ∑ i = 1 + ∞ g ( x i , y i ) p i , j , ( X , Y ) 为 离 散 型 ∫ − ∞ + ∞ ∫ − ∞ + ∞ g ( x , y ) f ( x , y ) d x d y , ( X , Y ) 为 连 续 型 \begin{aligned}E(V)&=E(g(X,Y))\\&=\begin{cases}\sum_{j=1}^{+\infty}\sum_{i=1}^{+\infty}g(x_i,y_i)p_{i,j},&(X,Y)为离散型\\\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}g(x,y)f(x,y)dxdy,&(X,Y)为连续型\end{cases}\end{aligned} E(V)=E(g(X,Y))={j=1+i=1+g(xi,yi)pi,j,++g(x,y)f(x,y)dxdy,(X,Y)(X,Y)

期望计算的例子

随机变量 ( X , Y ) (X,Y) (X,Y)的概率密度如下,求 E ( X + Y ) E(X+Y) E(X+Y)
f ( x , y ) = { ( x + y ) , 0 ≤ x ≤ 2 , 0 ≤ y ≤ 2 0 , 其 他 f(x,y)=\begin{cases}(x+y),& 0\leq x\leq2,0\leq y\leq2\\0,&其他\end{cases} f(x,y)={(x+y),0,0x2,0y2

E ( X + Y ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ ( x + y ) f ( x , y ) d x d y = ∫ 0 2 d x ∫ 0 2 ( x + y ) 2 d y = 8 + 32 3 \begin{aligned}E(X+Y)&=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}(x+y)f(x,y)dxdy\\&=\int_0^2dx\int_0^2(x+y)^2dy\\&=8+\frac{32}{3}\end{aligned} E(X+Y)=++(x+y)f(x,y)dxdy=02dx02(x+y)2dy=8+332

数学期望性质

1. E ( C = C ) 2. E ( C X ) = C E ( X ) 3. E ( X + Y ) = E ( X ) + E ( Y ) 4. 如 果 X 、 Y 相 互 独 立 , E ( X Y ) = E ( X ) E ( Y ) \begin{aligned} 1.&E(C=C)\\ 2.& E(CX)=CE(X)\\ 3.&E(X+Y)=E(X)+E(Y)\\ 4.&如果X、Y相互独立,E(XY)=E(X)E(Y) \end{aligned} 1.2.3.4.E(C=C)E(CX)=CE(X)E(X+Y)=E(X)+E(Y)XYE(XY)=E(X)E(Y)

方差、均方差

意义:反映了随机变量的离散程度

对于随机变量X,若 E { [ X − E ( X ) ] 2 } E\{[X-E(X)]^2\} E{[XE(X)]2}存在,那么该随机变量的方差和标准差的表达式如下

表达式记作
方差 E { [ X − E ( X ) ] 2 } E\{[X-E(X)]^2\} E{[XE(X)]2} D ( X ) 或 V a r ( X ) D(X)或Var(X) D(X)Var(X)
标准差、均方差 E { [ X − E ( X ) ] 2 } \sqrt{E\{[X-E(X)]^2\}} E{[XE(X)]2} σ ( X ) \sigma(X) σ(X)

对于离散型随机变量X,其分布律为 P { X = x k } = p k ( k = 1 , 2 , 3 , . . . ) P\{X=x_k\}=p_k(k=1,2,3,...) P{X=xk}=pk(k=1,2,3,...)
对于连续型随机变量X,其概率密度为 f ( x ) f(x) f(x),那么
D ( X ) = { ∑ k = 1 + ∞ [ x k − E ( X ) 2 ] , X 为 离 散 型 ∫ − ∞ + ∞ [ x k − E ( X ) 2 ] f ( x ) d x , X 为 连 续 型 D(X)=\begin{cases}\sum_{k=1}^{+\infty}[x_k-E(X)^2],&X为离散型\\\int_{-\infty}^{+\infty}[x_k-E(X)^2]f(x)dx,&X为连续型\end{cases} D(X)={k=1+[xkE(X)2],+[xkE(X)2]f(x)dx,XX

由数学期望的性质推导可得,随机变量的计算式可变为下式
D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 D(X)=E(X^2)-[E(X)]^2 D(X)=E(X2)[E(X)]2

常见概率分布的数学期望和方差一览表

分布类型概率密度/分布律数学期望 E ( X ) E(X) E(X) 方 差 D ( X ) 方差D(X) D(X)
X ∼ π ( λ ) X\sim \pi(\lambda) Xπ(λ)泊松分布 P { X = k } = λ k e − λ k ! P\{X=k\}=\frac{\lambda^ke^{-\lambda}}{k!} P{X=k}=k!λkeλ λ \lambda λ λ \lambda λ
X ∼ U ( a , b ) X\sim U(a,b) XU(a,b)均匀分布 f ( x ) = { 1 b − a , a < x < b 0 , 其 他 f(x)=\begin{cases}\frac{1}{b-a},&a<x<b\\0,&其他\end{cases} f(x)={ba1,0,a<x<b a + b 2 \frac{a+b}{2} 2a+b ( b − a ) 2 12 \frac{(b-a)^2}{12} 12(ba)2
X ∼ e ( λ ) X\sim e(\lambda) Xe(λ)指数分布 f ( x ) = { 1 λ e − x λ , x > 0 0 , x < 0 f(x)=\begin{cases}\frac{1}{\lambda}e^{-\frac{x}{\lambda}},&x>0\\0,&x<0\end{cases} f(x)={λ1eλx,0,x>0x<0 λ \lambda λ λ 2 \lambda^2 λ2
X ∼ B ( p ) X\sim B(p) XB(p)伯努利分布 P { X = k } = p k ( 1 − p ) n − k P\{X=k\}=p^k(1-p)^{n-k} P{X=k}=pk(1p)nkp p ( 1 − p ) p(1-p) p(1p)
X ∼ B ( n , p ) X\sim B(n,p) XB(n,p)二项分布 P { X = k } = C n k p k ( 1 − p ) n − k ( k = 0 , 1 , 2 , . . ) P\{X=k\}=C_n^kp^k(1-p)^{n-k}(k=0,1,2,..) P{X=k}=Cnkpk(1p)nk(k=0,1,2,..) n p np np n p ( 1 − p ) np(1-p) np(1p)
X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2)正态分布 p = { 0.6827 , μ − σ < X < μ + σ 0.9545 , μ − 2 σ < X < μ + 2 σ 0.9973 , μ − 3 σ < X < μ + 3 σ p=\begin{cases}0.6827,&\mu-\sigma<X<\mu+\sigma\\0.9545,&\mu-2\sigma<X<\mu+2\sigma\\0.9973,&\mu-3\sigma<X<\mu+3\sigma\end{cases} p=0.6827,0.9545,0.9973,μσ<X<μ+σμ2σ<X<μ+2σμ3σ<X<μ+3σ μ \mu μ σ 2 \sigma^2 σ2

协方差

意义:描述两个变量之间的是否同时偏离均值(即期望),该值大于0,两者呈现正相关性,小于0,两者呈现负相关性

对于(X,Y)二维随机变量,其协方差为
C o v ( X , Y ) = E { [ X − E ( X ) ] [ Y − E ( Y ) ] } Cov(X,Y)=E\{[X-E(X)][Y-E(Y)]\} Cov(X,Y)=E{[XE(X)][YE(Y)]}

协方差性质

1. C o v ( X , Y ) = C o v ( Y , X ) 2. C o v ( a X , b Y ) = a b C o v ( X , Y ) 3. C o v ( X 1 , X 2 , Y ) = C o v ( X 1 , Y ) + C o v ( X 2 , Y ) 4. X Y 相 互 独 立 , 那 么 C o v ( X , Y ) = 0 5. C o v ( X , X ) = D ( X ) 6. C o v ( X + Y ) = D ( X ) + D ( Y ) + 2 C o v ( X , Y ) 7. C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) \begin{aligned} 1.&Cov(X,Y)=Cov(Y,X)\\ 2.& Cov(aX,bY)=abCov(X,Y)\\ 3.&Cov(X_1,X_2,Y)=Cov(X_1,Y)+Cov(X_2,Y)\\ 4.&XY相互独立,那么Cov(X,Y)=0\\ 5.&Cov(X,X)=D(X)\\ 6.&Cov(X+Y)=D(X)+D(Y)+2Cov(X,Y)\\ 7.& Cov(X,Y)=E(XY)-E(X)E(Y) \end{aligned} 1.2.3.4.5.6.7.Cov(X,Y)=Cov(Y,X)Cov(aX,bY)=abCov(X,Y)Cov(X1,X2,Y)=Cov(X1,Y)+Cov(X2,Y)XYCov(X,Y)=0Cov(X,X)=D(X)Cov(X+Y)=D(X)+D(Y)+2Cov(X,Y)Cov(X,Y)=E(XY)E(X)E(Y)

相关系数

问题引入:当随机变量XY有一个与其数学期望的差很小,无论随机变量XY之间关系多么密切,协方差的差总是接近0,这时候,协方差就不能够很好的表示两者之间关系的密切程度,因此引入相关系数这一特征量,用来刻画XY之间的线性相关程度

对于(X,Y)二维随机变量,其相关系数为
ρ X Y = C o v ( X , Y ) D ( X ) D ( Y ) \rho_{XY}=\frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} ρXY=D(X) D(Y) Cov(X,Y)

相关系数性质

1. X , Y 相 互 独 立 时 , ρ X Y = 0 2. ∣ ρ X Y ∣ ≤ 1 3. ∣ ρ X Y ∣ = 1 的 充 要 条 件 为 P { Y = a + b X } = 1 ( a ≠ 0 , b 为 常 数 ) \begin{aligned} &1.X,Y相互独立时,\rho_{XY}=0\\ &2.|\rho_{XY}|\leq1\\ &3.|\rho_{XY}|=1的充要条件为P\{Y=a+bX\}=1(a\ne 0,b为常数) \end{aligned} 1.XYρXY=02.ρXY13.ρXY=1P{Y=a+bX}=1(a=0,b)

关于相关系数的一些结论

1. ρ = 0 时 , 称 X , Y 不 相 关 , 两 者 一 定 不 存 在 线 性 关 系 2. 两 个 相 互 独 立 的 随 机 变 量 一 定 不 相 关 , 但 两 个 不 相 关 的 随 机 变 量 不 一 定 相 互 独 立 3.0 ≤ ∣ ρ X Y ∣ ≤ 1 时 , ∣ ρ X Y ∣ 越 接 近 1 , X , Y 的 线 性 相 关 程 度 越 强 4. 相 关 系 数 只 有 相 对 意 义 , 没 有 绝 对 意 义 , 还 要 考 虑 样 本 空 间 的 大 小 \begin{aligned} &1.\rho=0时,称X,Y不相关,两者一定不存在线性关系\\ &2.两个相互独立的随机变量一定不相关,但两个不相关的随机变量不一定相互独立\\ &3.0\leq|\rho_{XY}|\leq1时,|\rho_{XY}|越接近1,X,Y的线性相关程度越强\\ &4.相关系数只有相对意义,没有绝对意义,还要考虑样本空间的大小 \end{aligned} 1.ρ=0X,Y,线2.3.0ρXY1ρXY1X,Y线4.,,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夺笋123

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值