【图像处理】Kalman滤波的目标跟踪【Matlab 305期】

一、简介

运动物体跟踪实际上就是对运动物体位置的测量和估计,和称小兔兔体重一样,我们也有两个渠道可以知道运动物体的位置,一个是我们观察到的,目标A在的某一帧图像的某个坐标点,另一个是我们根据前面几帧里目标的运动情况估计出来的,这个估计是假定目标运动是光滑的(当然也可以有其他模型),在这个根据以前运动做出的估计和我们测出来的目标点位置之间做个加权平均,就是现在的估计值,对下一帧做同样处理,加权平均的权值就是Kalman增益,根据Kalman提供的算法可由以往的误差大小和分布推出,这就是全部的用Kalman滤波做目标跟踪的概念。
Kalman滤波理论主要应用在现实世界中个,并不是理想环境。主要是来跟踪的某一个变量的值,跟踪的依据是首先根据系统的运动方程来对该值做预测,比如说我们知道一个物体的运动速度,那么下面时刻它的位置按照道理是可以预测出来的,不过该预测肯定有误差,只能作为跟踪的依据。另一个依据是可以用测量手段来测量那个变量的值,当然该测量也是有误差的,也只能作为依据,不过这2个依据的权重比例不同。最后kalman滤波就是利用这两个依据进行一些列迭代进行目标跟踪的。
在这个理论框架中,有2个公式一定要懂,即:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、源代码

clear,clc
% 计算背景图像
Imzero = zeros(240,320,3);
for i = 1:5
Im{i} = double(imread(['DATA/',int2str(i),'.jpg']));
Imzero = Im{i}+Imzero;
end
Imback = Imzero/5;
[MR,MC,Dim] = size(Imback);
% Kalman滤波器初始化
R=[[0.2845,0.0045]',[0.0045,0.0455]'];
H=[[1,0]',[0,1]',[0,0]',[0,0]'];
Q=0.01*eye(4);
P = 100*eye(4);
dt=1;
A=[[1,0,0,0]',[0,1,0,0]',[dt,0,1,0]',[0,dt,0,1]'];
g = 6; 
Bu = [0,0,0,g]';
kfinit=0;
x=zeros(100,4);
% 循环遍历所有图像
for i = 1 : 60
  % 导入图像
  Im = (imread(['DATA/',int2str(i), '.jpg'])); 
  imshow(Im)
  imshow(Im)
  Imwork = double(Im);
  %提取球的质心坐标及半径
  [cc(i),cr(i),radius,flag] = extractball(Imwork,Imback,i);
  if flag==0
    continue
  end
  %用绿色标出球实际运动的位置
hold on
    for c = -1*radius: radius/20 : 1*radius
      r = sqrt(radius^2-c^2);
      plot(cc(i)+c,cr(i)+r,'g.')
      plot(cc(i)+c,cr(i)-r,'g.')
end
  % Kalman器更新
  if kfinit==0
    xp = [MC/2,MR/2,0,0]'
  else
    xp=A*x(i-1,:)' + Bu
  end
  kfinit=1;
  PP = A*P*A' + Q
  K = PP*H'*inv(H*PP*H'+R)
  x(i,:) = (xp + K*([cc(i),cr(i)]' - H*xp))';
  x(i,:)
  [cc(i),cr(i)]
  P = (eye(4)-K*H)*PP
%用红色画出球实际的运动位置
  hold on
    for c = -1*radius: radius/20 : 1*radius
      r = sqrt(radius^2-c^2);
      plot(x(i,1)+c,x(i,2)+r,'r.')
      plot(x(i,1)+c,x(i,2)-r,'r.')
    end
      pause(0.3)
end
function [cc,cr,radius,flag]=extractball(Imwork,Imback,index)
% 功能:提取图像中最大斑点的质心坐标及半径
% 输入:Imwork-输入的当前帧的图像;Imback-输入的背景图像;index-帧序列图像序号
% 输出:cc-质心行坐标;cr-质心列坐标;radius-斑点区域半径;flag-标志
  cc = 0;
  cr = 0;
  radius = 0;
  flag = 0;
  [MR,MC,Dim] = size(Imback);
  % 将输入图像与背景图像相减,获得差异最大的区域
  fore = zeros(MR,MC);          
  fore = (abs(Imwork(:,:,1)-Imback(:,:,1)) > 10) ...
     | (abs(Imwork(:,:,2) - Imback(:,:,2)) > 10) ...
     | (abs(Imwork(:,:,3) - Imback(:,:,3)) > 10);  
  foremm = bwmorph(fore,'erode',2); % 运用数学形态学去除微小的噪声
  % 选择大的斑点对其周围进行标记
  labeled = bwlabel(foremm,4);
  stats = regionprops(labeled,['basic']);
  [N,W] = size(stats);
  if N < 1
    return   
  end
 % 如果大的斑点的数量大于1,则用冒泡法进行排序
  id = zeros(N);
  for i = 1 : N
    id(i) = i;
  end
  for i = 1 : N-1
    for j = i+1 : N
      if stats(i).Area < stats(j).Area
        tmp = stats(i);
        stats(i) = stats(j);
        stats(j) = tmp;
        tmp = id(i);
        id(i) = id(j);
        id(j) = tmp;
      end
    end
  end

三、运行结果

在这里插入图片描述

四、备注

完整代码或者代写添加QQ912100926
往期回顾>>>>>>
【图像压缩】图像处理教程系列之图像压缩【Matlab 074期】
【图像分割】图像处理教程系列之图像分割(一)【Matlab 075期】
【图像分割】图像处理教程系列之图像分割(二)【Matlab 076期】
【模式识别】银行卡号之识别【Matlab 077期】
【模式识别】指纹识别【Matlab 078期】
【图像处理】基于GUI界面之DWT+DCT+PBFO改进图像水印隐藏提取【Matlab 079期】
【图像融合】CBF算法之图像融合【Matlab 080期】
【图像去噪】自适应形态学之图像去噪【Matlab 081期】
【图像增强】DEHAZENET和HWD之水下去散射图像增强【Matlab 082期】
【图像增强】PSO寻优ACE之图像增强【Matlab 083期】
【图像重建】ASTRA算法之图像重建【Matlab 084期】
【图像分割】四叉树之图像分割【Matlab 085期】
【图像分割】心脏中心线之提取【Matlab 086期】
【图像识别】SVM植物叶子之疾病检测和分类【Matlab 087期】
【图像识别】基于GUI界面之模板匹配手写数字识别系统【Matlab 088期】
【图像识别】基于GUI界面之不变矩的数字验证码识别【Matlab 089期】
【图像识别】条形码识别系统【Matlab 090期】
【图像识别】基于GUI界面RGB和BP神经网络之人民币识别系统【Matlab 091期】
【图像识别】CNN卷积神经网络之验证码识别【Matlab 092期】
【图像分类】极限学习分类器之对遥感图像分类【Matlab 093期】
【图像变换】DIBR-3D之图像变换【Matalb 094期】
【图像分割】模糊聚类算法之FCM图像分割【Matlab 095期】
【模式识别】银行监控系统之人脸识别【Matlab 096期】
【模式识别】基于GUI界面之疲劳检测系统【Matlab 097期】
【图像识别】国外车牌识别【Matlab 098期】
【图像分割】最大类间方差法(otsu)之图像分割【Matlab 099期】
【图像分割】直觉模糊C均值聚类之图像分割IFCM【Matlab 100期】
【图像分割】基于matlab形态学重建和过滤改进FCM算法(FRFCM)之图像分割【Matlab 101期】
【图像增强】局部对比度增强CLAHE算法之直方图增强【Matlab 102期】
【图像融合】Frequency Partition之图像融合【Matlab 103期】
【图像评价】SVM之图像无参考质量评价【Matlab 104期】
【图像边缘检测】最小二乘法用于椭圆边缘检测【Matlab 105期】
【图像加密】基于GUI界面之混沌系统图像加密解密【Matlab 106期】
【图像配准】SIFT算法之图像配准【Matlab 107期】
【图像分割】随机游走算法用于图像分割【Matlab 108期】
【图像分割】形态学重建和过滤改进FCM算法(FRFCM)用于图像分割【Matlab 109期】
【图像分割】图像分割IFCM之直觉模糊C均值聚类【Matlab 110期】
【图像增强】区域相似变换函数与蜻蜓算法之灰度图像增强【Matlab 111期】
【图像直线拟合】最小二乘法之图像直线拟合【Matlab 112期】
【图像去雾】暗通道之图像去雾【Matlab 113期】
【图像识别】基于matlab GUI界面之路面裂缝识别【Matlab 114期】
【图像识别】身份证号码之识别【Matlab 115期】
【图像聚类】FCM和改进之FCM脑部CT图像聚类【Matlab 116期】
【图像评价】CCF算法之图像质量评价【Matlab 117期】
【图像分割】蚁群优化模糊聚类之图像分割【Matlab 118期】
【模式识别】基于GUI界面之水果检测系统【Matlab 119期】
【模式识别】基于GUI界面之水果分类系统【Matlab 120期】
【模式识别】基于GUI界面之水果分级系统【Matlab 121期】
【模式识别】人脸识别之检测脸、眼、鼻子和嘴【Matlab 122期】
【图像处理】基于 GUI界面之图像加解密【Matlab 124期】
【模式识别】基于GUI界面BP网络之手写体大写字母识别【Matlab 125期】
【图像分割】基于GUI界面之医学影像分割【Matlab 126期】
【图频处理】基于GUI界面之环图像处理与音乐播放系统【Matlab 127期】
【图像隐藏】基于Laguerre 变换之图像隐藏【Matlab 128期】
【图像处理】基于dwt函数之实现二维小波变换【Matlab 129期】
【图像处理】分形插值算法之调换图片【Matlab 130期】
【图像边缘检测】基于GUI界面之图像边缘检测系统【Matlab 131期】
【图像分割】基于GUI界面之彩色图像分割【Matlab 132期】
【图像去噪】基于GUI界面之图像滤波去噪【Matlab 133期】
【图像几何运算】基于GUI界面之图像几何运算系统【Matlab 134期】
【图像处理】基于GUI界面之图像处理系统【Matlab 135期】
【图像识别】基于matlab之细胞识别和边缘检测【Matlab 136期】
【模式识别】反馈神经Hopfield的数字识别【Matlab 172期】
【模式识别】指纹图像细节特征提取 【Matlab 173期】
【图像分割】RGB HSV YCbCr Lab颜色空间人脸检测之图像分割【Matlab 174期】
【图像压缩】小波变换之图像压缩【Matlab 175期】
【模式识别】基于GUI界面的火灾检测【Matlab 230期】
【模式识别】基于Hough变换的答题卡识别【Matlab 231期】
【模式识别】二值膨胀差分和椒盐滤波之教室内人数识别系统【Matlab 232期】
【小波变换】基于GUI界面DWT与SVD算法的数字水印 【Matlab 233期】
【模式识别】基于GUI界面的指针式表盘识别【Matlab 234期】
【模式识别】基于Hough变换图片车道线检测 【Matlab 235期】
【图像分割】粒子群优化T熵图像分割【Matlab 236期】
【图像分割】粒子群优化指数熵图像分割【Matlab 237期】
【图像分割】粒子群优化指数熵图像分割【Matlab 238期】
【模式识别】基于GUI贝叶斯最小错误率手写数字识别【Matlab 239期】
【模式识别】PCA手写数字识别【Matlab 240期】
【模式识别】特征匹配的英文印刷字符识别【Matlab 241期】
【模式识别】知识库的手写体数字识别【Matlab 242期】
【模式识别】银行卡数字识别【Matlab 243期】
【边缘检测】插值法亚像素边缘检测【Matlab 248期】
【图像识别】表情检测【Matlab 288期】
【图像检测】LSD直线检测【Matlab 289期】
【图像融合】红外与可见光的融合与配准算法【Matlab 290期】
【图像识别】帧差法跌倒检测【Matlab 291期】
【图像识别】组合BCOSFIRE过滤器进行墙体裂缝识别【Matlab 292期】
【模式识别】中值滤波和二值化的跌倒检测【Matlab 293期】
【图像隐写】DCT的图像隐写【Matlab 294期】
【图像隐写】LSB的图像隐写提取【Matlab 295期】
【图像隐写】高斯模型的JPEG图像隐写【Matlab 296期】
【图像隐写】图像自适应隐写算法wow【Matlab 297期】
【模式识别】基于GUI SVM和PCA的人脸识别【Matlab 298期】
【视频识别】轨迹方法行为识别【Matlab 299期】
【模式识别】基于GUI HSV和RGB模型水果分类【Matlab 300期】
【图像处理】基于GUI数字图像处理平台【Matlab 301期】
【图像分割】视网膜图像分割【Matlab 302期】
【模式识别】k-means聚类的手势识别【Matlab 303期】
【图像处理】Hough变换的人眼虹膜定位【Matlab 304期】

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页