??OpenCV中的特征检测与描述 —— 理解特征 + 哈里斯角检测 + Shi-Tomas拐角检测器
??上一节我们介绍了OpenCV中霍夫线/圈变换的原理和应用、使用分水岭算法实现图像分割和使用GrabCut算法实现交互式前景提取,这一部分我们就正式进入了下一个专题——特征检测与描述,在这一小节我们将介绍特征和拐角等几个重要的概念、哈里斯角检测及应用和Shi-Tomas拐角检测器及应用的内容
??哈喽大家好,这里是ErrorError!,一枚某高校大二本科在读的♂同学,希望未来在机器视觉领域能够有所成就,很荣幸能够在CSDN结识众多志同道合和在各方面都有所造诣的小伙伴,我们一起加油吧~??
??上节内容:OpenCV中的图像处理 —— 霍夫线 / 圈变换 + 图像分割(分水岭算法) + 交互式前景提取(GrabCut算法)
目录???
1. 理解特征
1.1 一切从拼图游戏说起
在拼图游戏中,我们会得到很多的小图像,然后正确组装它们以形成大的完整的图像,但是我们是怎么完成这个过程的呢?我们可不可以将相同的理论投影在计算机中让计算机也可以完成拼图游戏?如果计算机有这样的能力,我们就可以给计算机提供很多自然风光的真实图像,然后计算机会将这些图像拼接成一个大图像。再想想如果这个场景应用在建筑物或任何结构,为计算机提供大量图片,计算机又如何创建3模型呢?
我们要做的事情还有很多,敢想敢干是促进科技发展
本文介绍了OpenCV中的特征检测,重点关注哈里斯角检测和Shi-Tomas拐角检测器。通过理解特征在拼图游戏中的应用,引入了角点作为图像的良好特征。哈里斯检测器通过计算图像局部区域的特征值来识别角点。OpenCV的`cornerHarris()`函数用于实现这一检测,而`cornerSubPix()`用于提高检测精度。接着,文章讨论了Shi-Tomas检测器,其通过不同的评分函数找到高质量的角点。`goodFeaturesToTrack()`函数用于在OpenCV中实现该检测器。
最低0.47元/天 解锁文章
90

被折叠的 条评论
为什么被折叠?



