pytorch深度学习0基础实践-手写数字识别

说明

这是0基础实现深度学习极简ai的实验,单纯是为了配置环境熟悉ai编写流程,并且仅仅是基于cpu的实验(一些笔记本无gpu),所以我们实现的ai可能正确率很低,毕竟我们不是以这个为目的单纯是为了了解。

环境

1、miniforge

安装网上搜就行

开始菜单打开对应的终端Miniforge Prompt,开始配置,换源注意不要重复了哦,中间可能有问题多试几次或者问ai。

​
#1. 配置源

conda config --remove-key channels

# 添加主要频道

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2

# 添加 conda-forge 频道(重要!Miniforge 默认使用此频道)

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/

# 设置频道优先级

conda config --set channel_priority flexible

#=========================

#或者修改配置文件 c:/users/<用户名>/.condarc:

channels:

  - defaults

show_channel_urls: true

default_channels:

  - https://mirrors.ustc.edu.cn/anaconda/pkgs/main

  - https://mirrors.ustc.edu.cn/anaconda/pkgs/r

  - https://mirrors.ustc.edu.cn/anaconda/pkgs/msys2

custom_channels:

  conda-forge: https://mirrors.ustc.edu.cn/anaconda/cloud

  msys2: https://mirrors.ustc.edu.cn/anaconda/cloud

  bioconda: https://mirrors.ustc.edu.cn/anaconda/cloud

  menpo: https://mirrors.ustc.edu.cn/anaconda/cloud

  pytorch: https://mirrors.ustc.edu.cn/anaconda/cloud

  pytorch-lts: https://mirrors.ustc.edu.cn/anaconda/cloud

  simpleitk: https://mirrors.ustc.edu.cn/anaconda/cloud

channel_priority: flexible

 

# 清华大学源

#或者修改配置文件 c:/users/<用户名>/.condarc:

channels:

  - defaults

show_channel_urls: true

default_channels:

  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main

  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r

  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2

custom_channels:

  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

  pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

  nvidia: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

  deepmodeling: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

ssl_verify: true

channel_priority: flexible

#2.======

#创建python-3.13虚拟环境:torch_cpu

conda env list

conda create -n torch_cpu python=3.13

#创建完成后, 切换环境

conda activate torch_cpu

#3.=======

#安装PyTorch-2.6.0, 只能使用pip安装!! 因为使用CPU进行计算!!

pip install torch==2.6.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu

pip install jupyterlab matplotlib opencv-python

#4. ===========

# Jupyterlab中注册PyTorch内核

python -m ipykernel install --user --name=torch_cpu --display-name="PyTorch 3.13"

#5. Jupyterlab中运行或者vscode或者PyCharm中运行代码

(torch_cpu) C:\Users\admin>jupyter lab

​

2.vscode

我们也可以用前面的jupyter,如果不习惯可以用vscode。我们要设置一下。

如果没用过python记得先下python扩展。

改解释器

查看->命令面板

搜python:选择解释器,选择刚刚建的虚拟环境torch_cpu。

然后就可以建文件实现了。

代码

cnn.py

        训练ai的代码,EPOCHS是轮数我这设的5轮。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import time
import sys

# ==========================================
# 0. 环境检查
# ==========================================
print(f"Python Version: {sys.version.split()[0]}")
print(f"PyTorch Version: {torch.__version__}")

# 强制使用 CPU
DEVICE = torch.device("cpu")
print(f"运行设备: {DEVICE}")

# ==========================================
# 1. 参数设置
# ==========================================
BATCH_SIZE = 64
LEARNING_RATE = 0.01
EPOCHS = 5

# ==========================================
# 2. 数据准备
# ==========================================
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])

# 下载并加载数据
# num_workers=0 是为了兼容性,Python 3.13 在某些系统上多进程加载可能需要额外配置,CPU训练设为0最稳妥
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=0)

test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, batch_size=1000, shuffle=False, num_workers=0)

# ==========================================
# 3. 构建模型 (CNN)
# ==========================================
class SimpleCNN(nn.Module):
    def __init__(self):
        super(SimpleCNN, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.dropout = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = torch.relu(torch.max_pool2d(self.conv1(x), 2))
        x = torch.relu(torch.max_pool2d(self.dropout(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

model = SimpleCNN().to(DEVICE)

# PyTorch 2.0+ 特性:编译模型
# 在 Python 3.13 + Torch 2.6 中,torch.compile 已经适配。
# 对于这种小模型,编译可能会增加启动时间,但为了演示 2.6 的功能,我们可以尝试开启(可选)。
# 如果遇到兼容性报错,可注释掉下面这行。
# model = torch.compile(model) 

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=LEARNING_RATE, momentum=0.5)

# ==========================================
# 4. 训练与测试逻辑
# ==========================================
def train(epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(DEVICE), target.to(DEVICE)
        
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()

        if batch_idx % 100 == 0:
            print(f'Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)} '
                  f'({100. * batch_idx / len(train_loader):.0f}%)]\tLoss: {loss.item():.6f}')

def test():
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(DEVICE), target.to(DEVICE)
            output = model(data)
            test_loss += criterion(output, target).item()
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)
    print(f'\n测试集结果: Average loss: {test_loss:.4f}, Accuracy: {correct}/{len(test_loader.dataset)} '
          f'({100. * correct / len(test_loader.dataset):.2f}%)\n')

# ==========================================
# 5. 执行
# ==========================================
if __name__ == '__main__':
    start_time = time.time()
    
    for epoch in range(1, EPOCHS + 1):
        train(epoch)
        test()
        
    print(f"总耗时: {time.time() - start_time:.2f}秒")
    
    # 保存 PyTorch 2.6 格式的模型
    torch.save(model.state_dict(), "mnist_cnn_cpu.pth")
    print("模型已保存到本地。")   

try.py

        这是测试的代码,from cnn import SimpleCNN这的cnn是我们训练的代码的名字要放一起哦,image = Image.open(r'D:\mypython\shiyan\ai\test.png').convert('L')这个改成自己图片的地址。这个ai识别的正确率很低很正常。

#预测图片中的数字

#import cv2
from PIL import Image
import torch
from torchvision import transforms
from cnn import SimpleCNN 

# 加载模型
device = torch.device("cpu")
model = SimpleCNN().to(device)
model.load_state_dict(torch.load("mnist_cnn_cpu.pth"))
model.eval()

# 预处理并预测
image = Image.open(r'D:\mypython\shiyan\ai\test.png').convert('L')
transform = transforms.Compose([
    transforms.Resize((28, 28)),
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])
img_tensor = transform(image).unsqueeze(0)

with torch.no_grad():
    prediction = model(img_tensor).argmax(dim=1).item()
    print(f"预测数字是: {prediction}")

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值