说明
这是0基础实现深度学习极简ai的实验,单纯是为了配置环境熟悉ai编写流程,并且仅仅是基于cpu的实验(一些笔记本无gpu),所以我们实现的ai可能正确率很低,毕竟我们不是以这个为目的单纯是为了了解。
环境
1、miniforge
安装网上搜就行
开始菜单打开对应的终端Miniforge Prompt,开始配置,换源注意不要重复了哦,中间可能有问题多试几次或者问ai。
#1. 配置源
conda config --remove-key channels
# 添加主要频道
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
# 添加 conda-forge 频道(重要!Miniforge 默认使用此频道)
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
# 设置频道优先级
conda config --set channel_priority flexible
#=========================
#或者修改配置文件 c:/users/<用户名>/.condarc:
channels:
- defaults
show_channel_urls: true
default_channels:
- https://mirrors.ustc.edu.cn/anaconda/pkgs/main
- https://mirrors.ustc.edu.cn/anaconda/pkgs/r
- https://mirrors.ustc.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.ustc.edu.cn/anaconda/cloud
msys2: https://mirrors.ustc.edu.cn/anaconda/cloud
bioconda: https://mirrors.ustc.edu.cn/anaconda/cloud
menpo: https://mirrors.ustc.edu.cn/anaconda/cloud
pytorch: https://mirrors.ustc.edu.cn/anaconda/cloud
pytorch-lts: https://mirrors.ustc.edu.cn/anaconda/cloud
simpleitk: https://mirrors.ustc.edu.cn/anaconda/cloud
channel_priority: flexible
# 清华大学源
#或者修改配置文件 c:/users/<用户名>/.condarc:
channels:
- defaults
show_channel_urls: true
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
nvidia: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
deepmodeling: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
ssl_verify: true
channel_priority: flexible
#2.======
#创建python-3.13虚拟环境:torch_cpu
conda env list
conda create -n torch_cpu python=3.13
#创建完成后, 切换环境
conda activate torch_cpu
#3.=======
#安装PyTorch-2.6.0, 只能使用pip安装!! 因为使用CPU进行计算!!
pip install torch==2.6.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
pip install jupyterlab matplotlib opencv-python
#4. ===========
# Jupyterlab中注册PyTorch内核
python -m ipykernel install --user --name=torch_cpu --display-name="PyTorch 3.13"
#5. Jupyterlab中运行或者vscode或者PyCharm中运行代码
(torch_cpu) C:\Users\admin>jupyter lab
2.vscode
我们也可以用前面的jupyter,如果不习惯可以用vscode。我们要设置一下。
如果没用过python记得先下python扩展。
改解释器
查看->命令面板

搜python:选择解释器,选择刚刚建的虚拟环境torch_cpu。

然后就可以建文件实现了。
代码
cnn.py
训练ai的代码,EPOCHS是轮数我这设的5轮。
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import time
import sys
# ==========================================
# 0. 环境检查
# ==========================================
print(f"Python Version: {sys.version.split()[0]}")
print(f"PyTorch Version: {torch.__version__}")
# 强制使用 CPU
DEVICE = torch.device("cpu")
print(f"运行设备: {DEVICE}")
# ==========================================
# 1. 参数设置
# ==========================================
BATCH_SIZE = 64
LEARNING_RATE = 0.01
EPOCHS = 5
# ==========================================
# 2. 数据准备
# ==========================================
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# 下载并加载数据
# num_workers=0 是为了兼容性,Python 3.13 在某些系统上多进程加载可能需要额外配置,CPU训练设为0最稳妥
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=0)
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, batch_size=1000, shuffle=False, num_workers=0)
# ==========================================
# 3. 构建模型 (CNN)
# ==========================================
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.dropout = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = torch.relu(torch.max_pool2d(self.conv1(x), 2))
x = torch.relu(torch.max_pool2d(self.dropout(self.conv2(x)), 2))
x = x.view(-1, 320)
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
model = SimpleCNN().to(DEVICE)
# PyTorch 2.0+ 特性:编译模型
# 在 Python 3.13 + Torch 2.6 中,torch.compile 已经适配。
# 对于这种小模型,编译可能会增加启动时间,但为了演示 2.6 的功能,我们可以尝试开启(可选)。
# 如果遇到兼容性报错,可注释掉下面这行。
# model = torch.compile(model)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=LEARNING_RATE, momentum=0.5)
# ==========================================
# 4. 训练与测试逻辑
# ==========================================
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(DEVICE), target.to(DEVICE)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print(f'Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)} '
f'({100. * batch_idx / len(train_loader):.0f}%)]\tLoss: {loss.item():.6f}')
def test():
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(DEVICE), target.to(DEVICE)
output = model(data)
test_loss += criterion(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print(f'\n测试集结果: Average loss: {test_loss:.4f}, Accuracy: {correct}/{len(test_loader.dataset)} '
f'({100. * correct / len(test_loader.dataset):.2f}%)\n')
# ==========================================
# 5. 执行
# ==========================================
if __name__ == '__main__':
start_time = time.time()
for epoch in range(1, EPOCHS + 1):
train(epoch)
test()
print(f"总耗时: {time.time() - start_time:.2f}秒")
# 保存 PyTorch 2.6 格式的模型
torch.save(model.state_dict(), "mnist_cnn_cpu.pth")
print("模型已保存到本地。")
try.py
这是测试的代码,from cnn import SimpleCNN这的cnn是我们训练的代码的名字要放一起哦,image = Image.open(r'D:\mypython\shiyan\ai\test.png').convert('L')这个改成自己图片的地址。这个ai识别的正确率很低很正常。
#预测图片中的数字
#import cv2
from PIL import Image
import torch
from torchvision import transforms
from cnn import SimpleCNN
# 加载模型
device = torch.device("cpu")
model = SimpleCNN().to(device)
model.load_state_dict(torch.load("mnist_cnn_cpu.pth"))
model.eval()
# 预处理并预测
image = Image.open(r'D:\mypython\shiyan\ai\test.png').convert('L')
transform = transforms.Compose([
transforms.Resize((28, 28)),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
img_tensor = transform(image).unsqueeze(0)
with torch.no_grad():
prediction = model(img_tensor).argmax(dim=1).item()
print(f"预测数字是: {prediction}")
7177

被折叠的 条评论
为什么被折叠?



